文章主要内容总结
本文聚焦于利用强化学习(RL)技术改进大型语言模型(LLMs)在软件漏洞检测中的推理能力,具体研究了组相对策略优化(Group Relative Policy Optimization, GRPO) 在该任务中的应用。主要内容包括:
- 研究背景与问题:现有LLMs在漏洞检测中存在局限性,如过度预测某些漏洞类型、泛化能力弱、推理过程难以解释,且小型LLMs因计算成本低受关注但性能受限。
- 研究方法:
- 设计了适用于漏洞检测的GRPO框架,通过重新定义优势函数和奖励信号,结合BigVul、DiverseVul、CleanVul等数据集的标注信息。
- 提出模块化奖励函数,从格式化(Formatting)、正确性(Correctness)、推理质量(Reasoning) 三个维度评估模型输出,并通过动态权重机制避免“奖励欺骗(reward hacking)”。
- 实验验证:在LLaMA 8B、LLaMA 3B、Qwen 2.5 3B等小型模型上进行实验,对比零样本提示、监督微调(SFT)与GRPO的性能。结果显示,GRPO在准确率、泛化能力(跨数据集和编程语言)及推理质量上均优于基线方法。
创新点
- 扩展对小型LLMs的分析</