
人工智能 AI
文章平均质量分 78
慧一居士
即心是佛,无心是道
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
NLP 和 LLM 区别、对比 和关系
NLP (Natural Language Processing - 自然语言处理):一个广阔的计算机科学和人工智能子领域,致力于让计算机能够理解、解释、操作和生成人类语言。在人类语言和计算机之间架起沟通的桥梁,实现人机自然交互。非常广泛,涵盖了所有处理人类语言的技术和方法,包括但不限于:传统规则系统(早期)统计方法(如隐马尔可夫模型、条件随机场)经典的机器学习方法(如SVM、朴素贝叶斯)深度学习方法(包括RNN, LSTM, CNN,大语言模型 (LLM)原创 2025-08-01 18:40:22 · 571 阅读 · 0 评论 -
FAISS 功能介绍,使用场景介绍,各场景完整使用示例演示
核心功能向量索引与搜索:提供多种索引结构如暴力搜索(Flat)、倒排索引(IVF)、分层可导航小世界图(HNSW)和乘积量化(PQ),可在速度、准确性和内存使用之间进行权衡[5支持多种距离度量:支持 L2 距离(欧几里得距离)、余弦相似度和内积(点积),适用于不同的应用场景[5CPU 和 GPU 支持:能够利用 CPU 和 GPU 加速索引和搜索过程,在大规模数据集上表现出色,尤其适合需要实时搜索的场景[5灵活性与可扩展性:允许用户根据应用需求调整索引和搜索参数,并且可以动态添加、更新和删除向量;原创 2025-08-01 11:45:34 · 247 阅读 · 0 评论 -
通义千问,百炼平台,魔搭平台的关系
开发者流程:企业应用:原创 2025-07-31 17:27:57 · 540 阅读 · 0 评论 -
LangChain 各API 使用场景及各场景使用范例演示
提示词管理:通过提供动态占位符、变量填充、格式化控制等功能,让提示词更加灵活[1][5大语言模型交互:封装主流 LLM,提供统一的 API 调用接口[1][5链式调用:将多个模型或组件串联为逻辑流程,处理复杂任务[3][5记忆能力:在对话或流程中维护状态,支持历史消息的读取和写入[1][5智能代理:基于 LLM 的决策能力,动态选择工具或操作序列[1][5回调处理器:记录和干预应用运行的各个阶段,用于日志、监控和流处理[3][5功能:对文本/聊天内容的重点内容总结[2][3][4使用场景。原创 2025-07-31 14:57:10 · 543 阅读 · 0 评论 -
LLMs之LangChain(开发和构建)、LangSmith(生产化/跟踪)、LangServe(部署为API)的基础使用案例教程—利用LangChain开发和构建LLM的应用程
核心概念:LangChain 是一个基于大语言模型的应用开发框架[8它提供了一系列模块化组件,用于构建复杂的语言模型应用程。主要功能:支持多种语言模型提供商、丰富的提示模板、链式调用结构、代理和工具集成等。核心概念:LangSmith 是 LangChain 生态系统中的工具,用于调试、测试、评估和监控基于大语言模型(LLM)的应用程序[2][3主要功能:Tracing(追踪)、数据集管理、评估、监控、协作等[2][3核心概念。原创 2025-07-31 11:32:06 · 794 阅读 · 0 评论 -
LangChain API 功能介绍和使用示例
以下是关于。原创 2025-07-29 16:51:54 · 829 阅读 · 0 评论 -
Langchain 功能介绍和使用示例演示
模型 I/O功能概述:提供统一的大语言模型接口,支持多种 LLM,并通过提示词模板动态管理输入输出[2][4关键特性模型包装器:适配不同平台的 LLM,简化 API 调用[2输出解析器:从模型输出中提取结构化信息[2][4提示词管理:支持模板化输入,便于动态调整[3][4数据增强与检索功能概述:连接外部数据源,实现文档加载、转换、存储和查询[2][3关键特性文档加载器:支持多种格式(PDF、CSV、SQL 等)的数据导入[3][4向量存储与检索:通过嵌入技术实现高效数据检索[2][4。原创 2025-07-29 15:42:21 · 698 阅读 · 0 评论 -
MCP(模型上下文协议)协议和Http协议对比
用于客户端(如浏览器)与服务器之间的通用数据交换(网页、API、文件等)。:针对大语言模型(LLM)的输入输出、上下文管理、工具调用等场景设计。:默认不保留会话状态(依赖 Cookie/Token 维持状态)。:支撑整个互联网的基础协议(Web、APP、IoT 等)。:原生支持多轮对话、长上下文管理(如角色设定、历史记录)。:专为 AI 应用场景优化(如聊天、推理、函数调用)。需自行处理:会话状态、错误重试、流式解析、函数调用等。:上下文继承、工具协商、流式分块、多模态数据包。原创 2025-06-17 23:09:02 · 982 阅读 · 0 评论 -
Cline工具功能介绍和详细使用示例
智能代码补全与生成根据上下文提供精准的代码建议,快速编写代码。支持多种编程语言,如Python、JavaScript、Java、C++等。代码分析与优化实时检测并修复代码中的错误,包括语法错误和逻辑错误。提供代码重构建议,优化代码结构和可读性。终端命令执行在VS Code终端中直接执行命令,如安装依赖、运行脚本等。监控命令输出,及时反馈执行结果。Web开发支持启动无头浏览器,进行网页交互操作(点击、输入、滚动)。捕获屏幕截图和控制台日志,辅助调试和优化Web应用。多模型支持与扩展性。原创 2025-06-17 22:58:01 · 795 阅读 · 0 评论 -
MCP 模型上下文协议 功能介绍,特性,工具调用调试,客户端、服务端实战使用完整示例演示(java 调用后端业务多个API 工具)
一、功能介绍Model Context Protocol (MCP) 是由 Anthropic 提出的开放标准协议,旨在实现大语言模型(LLM)与外部数据源及工具的无缝集成[1标准化接口:定义通用的通信协议(基于 JSON-RPC 2.0)、数据格式和规则,支持 LLM 与本地/远程资源的高效交互[1][3多类型资源支持资源(Resources):提供结构化数据(如文件、数据库查询结果)[3工具(Tools):封装可调用的函数(如 API 请求、文件操作)[3提示(Prompts)原创 2025-06-17 17:09:02 · 375 阅读 · 0 评论 -
JSON-RPC 2.0 与 1.0 对比总结
一、核心特性对比特性协议版本标识无显式版本字段,依赖method和参数结构区分[5强制包含字段,明确版本[1][4参数结构仅支持索引数组()[5支持索引数组或关联数组()[3][4错误处理错误信息结构简单,无标准错误码定义[5标准化错误码(如-32601表示方法未找到)[2][4],支持自定义错误码(范围)[4批量请求不支持[5支持批量请求(多个请求打包为数组)[1][4通知机制无明确支持,需通过无id或特殊逻辑实现[5显式支持通知(无id字段,无需响应)[3][4兼容性。原创 2025-06-17 13:51:33 · 1102 阅读 · 0 评论 -
MCP(Model Context Protocol)与 LangChain的区别与联系
MCP(Model Context Protocol)与 LangChain 是大语言模型(LLM)应用开发领域的两种不同技术方案,分别聚焦于协议标准化与框架灵活性。原创 2025-06-11 19:37:38 · 662 阅读 · 0 评论 -
MCP介绍,原理说明,完整使用示例demo
MCP(Model Context Protocol,模型上下文协议)是一种开放协议,旨在标准化大型语言模型(LLM)与外部数据源和工具之间的集成方式,使AI应用程序能够高效、安全地访问和利用外部资源。原创 2025-05-29 11:17:10 · 980 阅读 · 0 评论 -
Spring AI 的功能介绍、集成使用和详细示例说明
支持主流 AI 模型和供应商模型类型聊天模型:提供统一的ChatModelAPI,支持对话式交互。嵌入模型:将文本、图像等转换为向量,用于语义搜索和 RAG(检索增强生成)等场景。文本转图像模型:根据文本生成图像。文本转语音模型:将文本转换为语音。音频转录模型:将音频转换为文本。支持的供应商:OpenAI、DeepSeek、Microsoft、Amazon、Google、Ollama 等。可移植的 API提供跨 AI 供应商的标准化接口,开发者可在不同模型间无缝切换。原创 2025-05-16 20:19:49 · 937 阅读 · 0 评论 -
MLOps 详解
MLOps(Machine Learning Operations)是机器学习运维的实践框架,旨在通过结合机器学习(ML)、软件开发(DevOps)和数据工程,实现机器学习模型的高效开发、部署、监控和维护。MLOps通过系统化的流程和工具,解决了机器学习模型从开发到部署的“最后一公里”问题,是企业实现AI规模化应用的关键。随着技术发展,MLOps将进一步推动机器学习从实验走向生产,成为AI工程化的核心支柱。原创 2025-05-10 07:01:03 · 812 阅读 · 0 评论 -
AIOps 工具介绍
AIOps 工具介绍原创 2025-05-09 21:52:07 · 543 阅读 · 0 评论 -
什么是AIOps
什么是AIOps原创 2025-05-09 21:49:30 · 686 阅读 · 0 评论 -
AI工具 Trae 创建java项目和配置运行环境完整示例
Trae 通过自然语言交互和 AI 驱动,显著简化了 Java 项目的创建与配置流程。其 Builder 模式适合快速生成基础框架,而 Chat 模式和 MCP 扩展则能应对复杂需求(如日志、性能优化)。开发者可专注于业务逻辑,减少样板代码编写时间。如需进一步实践,可参考 Trae 官网教程或社区案例(如。原创 2025-04-29 20:18:46 · 2790 阅读 · 0 评论 -
Prompt Engineering 提示工程:释放大语言模型潜力的关键技术与实践指南
提示工程是一门精心设计输入指令以引导大型语言模型(LLM)生成高质量输出的艺术与科学。它通过优化与AI的"对话方式",将通用模型转变为特定领域的"专家助手"。从技术角度看,提示工程是"设计、优化和实施提示或指令的实践,这些提示或指令用于引导大型语言模型的输出,以帮助完成各种任务"。发展历程上,提示工程的概念可追溯至1979年Pfaff提出的"控制代码"思想,但真正兴起于2019年GPT-2发布后。原创 2025-04-28 19:10:25 · 1203 阅读 · 0 评论 -
AI中Token的理解与使用总结
降低成本提高处理效率避免超出上下文窗口限制优化模型性能随着模型发展,Token处理方式也在不断演进,但基本原理和优化策略保持相通。原创 2025-04-27 21:32:13 · 405 阅读 · 0 评论 -
Spring Boot 集成 Ollama API 使用总结
在 中添加必要的依赖:2. 配置 Ollama 服务地址在 中配置 Ollama 服务地址:二、基础 API 调用1. 同步请求(使用 RestTemplate)创建 Service 类调用 Ollama 生成接口:2. 异步请求(使用 WebClient)配置 WebClient 实现非阻塞调用:三、高级功能集成1. 流式响应处理处理 Ollama 的流式输出(逐块返回结果):2. 集成 LangChain结合 LangChain 的 Spring Boot Starter原创 2025-04-22 08:28:55 · 954 阅读 · 0 评论 -
Ollama 的安装指南、使用技巧与调优总结
【代码】Ollama 的安装指南、使用技巧与调优总结。原创 2025-04-22 07:56:12 · 1872 阅读 · 0 评论 -
AI 技术栈图谱
AI技术栈图谱原创 2025-01-18 17:31:26 · 160 阅读 · 0 评论 -
tesseract识别图片,并训练提高其准确率
最后将num.traineddata复制到到/usr/local/Cellar/tesseract/3.05.00/share/tessdata目录当中,就可以使用了。b、将.tif格式的文件进行合并,打开jTessBoxEditor.jar,然后点菜单上的Tool->Merge TIFF ,主要命名使用官方推荐。由于我们需要进行训练提高识别的准确率,所有使用下面的安装命令,主要如果先前已经安装了先执行brew uninstall tesseract,然后执行下面命令。a、使用HomeBrew进行安装。原创 2024-12-13 13:58:32 · 572 阅读 · 0 评论