通义千问,百炼平台,魔搭平台的关系


1. 通义千问(Qwen)

  • 定位
    通义千问是阿里云自主研发的超大规模语言模型,属于基础模型,提供自然语言理解、文本生成、代码编写、多模态处理等核心能力。
  • 功能
    支持文本生成、逻辑推理、多语言翻译、代码辅助、多模态交互(如图文对话)等,是阿里云通义大模型体系的核心。
  • 应用场景
    覆盖企业服务(智能客服、金融分析)、内容创作(文案生成)、教育科研(论文摘要)、开发者工具(代码辅助)等。

2. 百炼平台(BaiLian)

  • 定位
    百炼是一站式大模型开发与服务平台,集成通义千问等阿里云自研模型,同时兼容第三方模型,提供从模型训练、调优到部署的全流程工具。
  • 功能
    • 模型调用与训练:支持通义千问系列模型(如Qwen-Max、Qwen-Turbo)的API调用、微调和评估。
    • 应用构建:提供低代码/无代码工具,帮助企业快速构建智能体(如对话机器人、内容生成工具)。
    • 安全与管理:支持企业级权限管理、数据加密和合规性保障。
  • 核心价值
    降低大模型应用门槛,加速企业将通义千问等模型集成到业务场景中(如智能座舱升级、基金数据分析)。

3. 魔搭平台(ModelScope)

  • 定位
    魔搭是AI模型开放平台,汇聚了阿里云自研模型(如通义千问)及第三方开源/闭源模型,提供模型的探索、体验、部署和协作服务。
  • 功能
    • 模型共享:覆盖视觉、语音、NLP等多模态模型,包含通义千问、Kimi等头部模型。
    • 一站式服务:支持模型的训练、推理、部署(如一键部署到阿里云边缘云)。
    • 开发者生态:与高校、社区合作,推动模型开源与技术普及(如“ModelScope-Sora开源计划”)。
  • 核心价值
    促进模型的开放共享与生态共建,帮助开发者快速获取和使用通义千问等模型。

三者关系总结

角色通义千问百炼平台魔搭平台
定位基础语言模型大模型开发与应用平台模型开放与共享社区
核心功能自然语言处理、多模态交互等模型训练、调优、应用构建与管理模型共享、部署、开发者协作
与通义千问的关系通义千问是其核心模型之一集成通义千问系列模型,提供企业级服务提供通义千问模型的下载、推理与部署服务
用户群体终端用户、开发者企业开发者、ISV(独立软件供应商)开发者、高校、开源社区
生态协同提供底层能力面向企业应用落地面向模型开放与社区共建

协同示例

  1. 开发者流程

    • 开发者可在魔搭平台下载通义千问模型并进行本地测试。
    • 若需进一步优化模型(如微调),可通过百炼平台调用通义千问API并接入企业数据。
    • 最终通过百炼平台将模型部署为企业级应用(如智能客服系统)。
  2. 企业应用

    • 企业通过百炼平台直接调用通义千问的能力,结合自身数据训练定制化模型。
    • 同时,企业也可在魔搭平台寻找其他补充模型(如图像处理模型),与通义千问结合构建多模态应用。

总结

  • 通义千问是阿里云大模型能力的核心引擎,提供基础技术支撑。
  • 百炼平台是企业级应用落地的“加速器”,帮助开发者和企业高效构建大模型应用。
  • 魔搭平台是模型开放与生态共建的“桥梁”,推动模型共享与开发者协作。
    三者共同构成了阿里云从模型研发、开放共享到产业落地的完整生态闭环。
### 通义微调方法概述 对于通义(Qwen)以及其他基于大语言模型的任务适配,Fine-Tuning 是一种常见的方式。以下是关于如何对通义进行微调的具体方法及其与百炼模型的相关操作。 #### Fine-Tuning 的基本概念 Fine-Tuning 指的是在已有预训练模型基础上进一步优化其性能以适应特定任务的需求[^1]。这种方法允许利用较小规模的标注数据来调整模型权重,从而提升目标领域内的表现。 #### Prompt Tuning 和 Supervised Fine-Tuning 对比 除了传统的全量参数更新外,还有更高效的策略如 **Prompt Tuning** 只需修改少量参数即可完成定制化需求[^2]。这种方式不仅减少了计算资源消耗还加快了收敛速度;而监督式精调(Supervised Fine-Tuning),则倾向于保持较低的学习率α\alphaα设定,目的是维持住原有广泛适用性的特性不变形过多[^3]。 #### BitFit 方法简介 BitFit 提供了一种新颖且简便有效的途径——仅仅改变偏差项即能取得良好成效,并强调这不是单纯为了匹配新样本集合属性变化而是强化发挥现有表达潜力的作用[^4]。 #### 实际案例分析 - 使用阿里云平台实现 Qwen 微调流程 下面给出一段 Python 脚本作为例子展示怎样借助阿里巴巴集团旗下的 ModelScope 或其他类似服务框架执行上述提到的各种形式之一: ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch # 加载基础模型和分词器 model_name_or_path = "qwen-base" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path) # 准备训练数据 (此处仅为示意,请替换为实际业务场景中的数据) train_texts = ["你好", "今天天气真好"] labels = [[0], [1]] # 假设这是二分类题对应的标签列表 def prepare_dataset(texts, labels): encodings_dict = tokenizer( texts, truncation=True, max_length=512, padding="max_length", return_tensors='pt' ) dataset = { 'input_ids': encodings_dict['input_ids'], 'attention_mask': encodings_dict['attention_mask'], 'labels': torch.tensor(labels).unsqueeze(-1), } return dataset dataset = prepare_dataset(train_texts, labels) # 设置超参并启动fine-tune过程 optimizer = torch.optim.AdamW(model.parameters(), lr=1e-5) # 小学习率有助于保护原特征表示 for epoch in range(3): # 这里只做三轮迭代演示用途 optimizer.zero_grad() outputs = model(input_ids=dataset['input_ids'], attention_mask=dataset['attention_mask'], labels=dataset['labels']) loss = outputs.loss loss.backward() optimizer.step() print("Finetuned model saved.") torch.save(model.state_dict(), "./finetuned_qwen.pth") ``` 此脚本展示了加载预训练模型、准备输入数据以及实施简单的梯度下降算法来进行一次简易版的 fine-tuning 流程。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值