
运维与智能运维
文章平均质量分 88
夏天又到了
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
智能运维中的数据转换
数据转换是数据预处理中的关键步骤,用于将数据从原始格式转换为适合分析和建模的形式。下面以传感器数据为例,详细介绍数据转换的方法和过程,如示例6-4所示,示例文件为demo/code/chapter6/Data_transformation.py。convert_time_to_seconds(): 将时间单位从毫秒(ms)、秒(s)、纳秒(ns)统一转换为秒。单位不统一:存储容量单位有GB、MB、KB,时间单位有毫秒(ms)、秒(s)、纳秒(ns)。单位转换:将所有容量统一为GB,时间统一为秒。原创 2025-07-31 10:28:48 · 409 阅读 · 0 评论 -
智能运维数据的特征选择
特征选择(Feature Selection)也称特征子集选择(Feature Subset Selection,FSS)或属性选择(Attribute Selection)。特征选择是指从已有的M个特征(Feature)中选择N个特征,使得系统的特定指标最优化,也是从原始特征中选择出一些最有效特征以降低数据集维度的过程,是提高学习算法性能的一个重要手段。特征选择旨在选择最相关的特征以提高模型的性能和可解释性。通过特征选择可以减少数据的维度,降低计算复杂度,避免过拟合。原创 2025-07-30 11:31:07 · 950 阅读 · 0 评论 -
智能运维中的数据离散化
离散化是将连续变量转换为有限数量的离散类别,以简化数据处理和分析。通过将数据划分为若干区间或类别,离散化可以提高模型对数据的处理能力,尤其是对于某些只处理离散特征的算法,如决策树和朴素贝叶斯。此外,离散化还能减少异常值的影响,使数据分布更加均匀,从而提高模型的健壮性和预测性能。这种处理方式不仅使数据更符合模型的要求,还能在数据分布不均时提供更好的稳定性和解释性。原创 2025-07-29 08:53:49 · 927 阅读 · 0 评论 -
智能运维中的数据转换
数据转换是数据预处理中的关键步骤,用于将数据从原始格式转换为适合分析和建模的形式。下面以传感器数据为例,详细介绍数据转换的方法和过程,如示例6-4所示,示例文件为demo/code/chapter6/Data_transformation.py。convert_time_to_seconds(): 将时间单位从毫秒(ms)、秒(s)、纳秒(ns)统一转换为秒。单位不统一:存储容量单位有GB、MB、KB,时间单位有毫秒(ms)、秒(s)、纳秒(ns)。单位转换:将所有容量统一为GB,时间统一为秒。原创 2025-07-28 08:21:30 · 415 阅读 · 0 评论 -
智能运维的数据清洗:去除重复记录
示例6-3首先生成模拟的Web服务器访问日志数据,然后进行IP去重,示例文件为demo/code/chapter6/drop_duplicates.py。有效的数据清洗能够提高数据的准确性和一致性,为后续的数据分析和建模奠定坚实的基础。(3)extract_ips_from_log函数:使用正则表达式从每行日志中提取IP地址,返回包含所有IP地址的列表(可能有重复)。(2)save_log_to_file函数:将生成的模拟日志保存到文件,格式类似于常见的Nginx/Apache访问日志。原创 2025-07-28 07:55:49 · 317 阅读 · 0 评论 -
智能运维的数据清洗:处理缺失值
数据清洗是数据预处理中的关键步骤,旨在识别和修正数据中的错误、不一致或不完整之处,以确保数据质量和分析结果的可靠性。数据清洗的过程包括处理缺失值、去除重复记录、纠正数据错误和标准化数据格式。有效的数据清洗能够提高数据的准确性和一致性,为后续的数据分析和建模奠定坚实的基础。缺失值是指在数据集中某些字段没有被填充或记录的情况。处理缺失值的方法包括删除缺失值、填补缺失值或通过模型预测缺失值。填补缺失值的常见方法有均值填补、中位数填补和使用预测模型填补。原创 2025-07-25 08:15:41 · 942 阅读 · 0 评论 -
智能运维中的数据存储
数据存储在智能运维中扮演着关键角色,它涉及选择适当的存储类型、设计高效的存储架构、制定备份与恢复策略、确保数据安全与隐私、优化数据管理以及提高数据访问和检索的效率。通过综合考虑这些因素,企业可以建立一个可靠、高效的数据存储系统,支持智能运维的各种需求。原创 2025-07-24 12:29:28 · 943 阅读 · 0 评论 -
智能运维的数据采集方法与工具
数据采集是指从各种信息源获取数据的过程。对于智能运维而言,这包括从IT系统、应用程序、网络设备、用户行为等多个来源采集有关系统性能、健康状况、用户活动等方面的数据。数据采集是智能运维的基础,为后续的数据分析、自动化决策和问题解决提供支持。例如,实时获取系统状态数据,可以快速识别和响应异常情况;收集性能数据,用来评估和优化系统的运行效率;记录系统行为和错误信息,以帮助分析和排查故障;积累历史数据,进行趋势分析以预测未来的需求和潜在问题。原创 2025-07-23 09:34:15 · 1514 阅读 · 0 评论 -
【图书介绍】《Python自动化运维快速入门(第2版)》
#好书推荐##好书奇遇季#《Python自动化运维快速入门(第2版)》,京东当当天猫都有发售。定价89元,网店打折销售更便宜。随着IT技术的进步及业务需求的快速增长,服务器也由几十台上升到成百上千台,IT运维自动化是一个必然的趋势。Python是当今最流行的编程语言之一,由于Python语言本身的优势,因此在编写自动化程序时简单、高效,实用效果立竿见影。目前开源软件社区优秀的自动化运维软件,如Ansible、Airflow、Celery、Paramiko等框架都使用Python语言开发,甚至一些大型商用原创 2022-04-27 11:28:02 · 597 阅读 · 0 评论 -
【图书推荐】《Ubuntu Linux系统管理与运维实战》
Linux是目前很流行的操作系统之一,而Ubuntu是众多Linux发行版中的佼佼者。它以开源、稳定和广泛的社区支持等特点,被广泛用于桌面系统、服务器和二次开发的生产环境。本书使用Ubuntu 22.04 LTS版本,通过由浅入深、循序渐进的方式讲解Ubuntu系统管理与运维技能。本书共分13章,内容包括了解Ubuntu、安装Ubuntu、桌面环境、文件系统基础知识、文件和目录管理、用户和权限管理、系统启动和关闭、服务和进程管理、软件包管理、磁盘和文件系统管理、高级网络管理、网络服务管理以及系统安全。原创 2024-06-05 08:31:37 · 2345 阅读 · 1 评论 -
智能运维的相关标准
标准化是通过达成对某项技术的共识,制定和实施技术标准的过程。这一过程有助于保障服务或产品质量,建立统一认知,提高技术的通用性和互操作性,并减少不必要的多样性。目前,已有研究尝试通过标准化来解决人工智能领域的统一术语和技术规格问题,以及技术在特定应用场景中的适配难题。因此,制定智能运维标准是一种有效的解决方案,可以帮助从业人员了解智能运维的基本知识,掌握实践要点,识别和改进现有的不足,从而提升智能运维的实际效果。标准化为不同背景下的智能运维实践提供了必要条件,对提高整个行业的智能运维能力至关重要。原创 2025-07-22 09:44:42 · 627 阅读 · 0 评论 -
智能运维基础
智能运维AIOps作为一种新兴的运维模式,它通过机器学习、深度学习等人工智能技术对IT系统进行自动化监控、故障诊断和性能优化。它能够实时分析海量多模态运维数据,自动识别异常、定位故障根因并提供解决方案,相比传统基于规则和脚本的运维方式具有更强的自适应能力和泛化性。AIOps不仅能显著提升运维效率,降低人力成本,还能通过预测性维护有效预防系统故障,现已成为保障微服务等复杂分布式系统稳定运行的关键技术。本章将介绍智能运维的兴起、发展历程、技术基础,以及智能运维的应用和现有标准。原创 2025-07-21 12:39:38 · 1214 阅读 · 0 评论