Kafka压力测试(写入MQ消息压测和消费MQ消息压测)

本文详细介绍了一次在正式环境中对Kafka消息处理能力的性能测试,包括写入和消费消息的压力测试,评估其处理亿级别消息的性能。测试涵盖10w、100w和1000w级别的消息处理,通过分析结果,验证Kafka是否满足项目需求。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.测试目的

本次性能测试在正式环境下单台服务器上Kafka处理MQ消息能力进行压力测试。测试包括对Kafka写入MQ消息和消费MQ消息进行压力测试,根据10w、100w和1000w级别的消息处理结果,评估Kafka的处理性能是否满足项目需求。(该项目期望Kafka能够处理上亿级别的MQ消息)

2.测试范围及方法

2.1测试范围概述

测试使用Kafka自带的测试脚本,通过命令对Kafka发起写入MQ消息和Kafka消费MQ消息的请求。模拟不同数量级的MQ消息写入和MQ消息消费场景,根据Kafka的处理结果,评估Kafka是否满足处理亿级以上的消息的能力。

2.2性能测试场景设计

2.2.1Kafka写入消息压力测试
测试场景MQ消息数 (W)每秒写入消息数(条)记录大小(单位:字节)
Kafka消息写入测试1020001000
Kafka消息写入测试10050001000
Kafka消息写入测试100050001000
2.2.2Kafka消费消息压力测试
测试场景消费MQ消息数 (W)
Kafka消息消费测试10
Kafka消息消费测试100
Kafka消息消费测试1000

2.3测试方法简要描述

2.3.1测试目的

验证带台服务器上Kafka写入消息和消费消息的能力,根据测试结果评估当前Kafka集群模式是否满足上亿级别的消息处理能力。

2.3.2测试方法

在服务器上使用Kafka自带的测试脚本,分别模拟10w、100w和1000w的消息写入请求,查看Kafka处理不同数量级的消息数时的处理能力,包括每秒生成消息数、吞吐量、消息延迟时间。Kafka消息吸入创建的topic命名为test_perf,使用命令发起消费该topic的请求,查看Kafka消费不同数量级别的消息时的处理能力。

测试项压测消息数(单位:W)测试命令
写入MQ消息10./kafka-producer-perf-test.sh --topic test_perf --num-records 100000 --record-size 1000 --throughput 2000 --producer-props bootstrap.servers=localhost:9092
写入MQ消息100./kafka-producer-perf-test.sh --topic test_perf --num-records 1000000 --record-size 1000 --throughput 5000 --producer-props bootstrap.servers=localhost:9092
写入MQ消息1000./kafka-producer-perf-test.sh --topic test_perf --num-records 10000000 --record-size 1000 --throughput 5000 --producer-props bootstrap.servers=localhost:9092
消费MQ消息10./kafka-consumer-perf-test.sh --broker-list localhost:9092 --topic test_perf --fetch-size 1048576 --messages 100000 --threads 1
消费MQ消息100./kafka-consumer-perf-test.sh --broker-list localhost:9092 --topic test_perf --fetch-size 1048576 --messages 1000000 --threads 1
消费MQ消息1000./kafka-consumer-perf-test.sh --broker-list localhost:9092 --topic test_perf --fetch-size 1048576 --messages 10000000 --threads 1

注:脚本执行目录 /usr/local/Cellar/kafka/2.1.0/libexec/bin

3.测试环境

硬件:Mac book、16G内存、4核处理器
测试工具:Kafka自带压测脚本

4.测试结果

4.1测试结果说明

本次测试针对Kafka消息处理的能力 进行压力测试,对Kafka集群服务器中的一台进行MQ消息服务的压力测试,关注Kafka消息写入的延迟时间是否满足需求。对Kafka集群服务器中的一台进行MQ消息处理的压力测试,验证Kafka的消息处理能力。

4.2测试结果

4.2.1写入MQ消息
设置消息总数(单位:w)设置单个消息大小(单位:字节)设置每秒发送消息数实际写入消息数/秒95%的消息延迟(单位:ms)
10100020001999.521
100100050004999.751
1000100050004999.971

压测结果截图
写入10w消息压测结果

在这里插入图片描述

写入100w消息压测结果
在这里插入图片描述

写入1000w消息压测结果
在这里插入图片描述

kafka-producer-perf-test.sh 脚本命令的参数解析(以100w写入消息为例):
–topic topic名称,本例为test_perf
–num-records 总共需要发送的消息数,本例为100000
–record-size 每个记录的字节数,本例为1000
–throughput 每秒钟发送的记录数,本例为5000
–producer-props bootstrap.servers=localhost:9092 (发送端的配置信息,本次测试取集群服务器中的一台作为发送端,可在kafka的config目录,以该项目为例:/usr/local/kafka/config;查看server.properties中配置的zookeeper.connect的值,默认端口:9092)

MQ消息写入测试结果解析:
本例中写入100w条MQ消息为例,每秒平均向kafka写入了4.77MB的数据,大概是4999.75条消息/秒,每次写入的平均延迟为0.94毫秒,最大的延迟为153毫秒,1ms内占95%。

4.2.2消费MQ消息
消费消息总数(单位:w)共消费数据(单位:M)每秒消费数据(单位:M)每秒消费消息数消费耗时(单位:s)
1095.82187.15196244.10.5
100954.03319.60335133.33.0
10009537.11411.01430976.8123.2

压测结果截图

消费10w消息压测结果
在这里插入图片描述
消费100w消息压测结果
在这里插入图片描述
消费1000w消息压测结果
在这里插入图片描述
kafka-consumer-perf-test.sh 脚本命令的参数为:
–zookeeper 指定zookeeper的链接信息,本例为localhost:2181 ;
–topic 指定topic的名称,本例为test_perf,即4.2.1中写入的消息;
–fetch-size 指定每次fetch的数据的大小,本例为1048576,也就是1M
–messages 总共要消费的消息个数,本例为1000000,100w

以本例中消费100w条MQ消息为例总共消费了954.03M的数据,每秒消费数据大小为319.6081M,总共消费了1000373条消息,每秒消费335133.33条消息。

5.结果分析

kafka写入MQ消息设置5000条/秒时,消息延迟时间小于等于1ms,在可接受范围内,说明消息写入及时;kafka消费MQ消息时,1000W待处理消息的处理能力如果在每秒40w条以上,那么处理结果是理想的。
根据Kafka处理10w、100w和1000w级的消息时的处理能力,可以评估出Kafka集群服务,是否有能力处理上亿级别的消息。
本次测试是在正式环境集群服务中的单台服务器上进行,基本不需要考虑网络带宽的影响。所以单台服务器的测试结果,对评估集群服务是否满足上线后实际应用的需求,很有参考价值。

6、原文链接

https://blog.csdn.net/laofashi2015/article/details/81111466
https://www.cnblogs.com/xiao987334176/p/10075659.html
注:以上操作均在 Mac 系统上实践。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值