1动态规划理论基础
1.1什么是动态规划
如果某一问题有很多重叠子问题,使用动态规划是最有效的
所以动态规划中每一个状态一定是由上一个状态推导出来的,这一点区分于贪心,贪心没有状态推导。
1.2动态规划的解题步骤
动态规划五步曲
1.确定dp数组(dp table)以及下标的含义
2.确定递推公式
3.dp数组如何初始化
4.确定遍历顺序
5.举例推导dp数组
2、相关力扣题
斐波那契数
class Solution
{
public:
int fib(int n)
{
if (n <= 1)
{
return n;
}
vector<int> dp(n + 1, 0);
dp[0] = 0;
dp[1] = 1;
for(int i = 2; i <= n; i++)
{
dp[i] = dp[i-1] + dp[i-2];
}
return dp[n];
}
};
注意dp数组的大小是n+1
爬楼梯
class Solution {
public:
int climbStairs(int n)
{
if (n <= 1) //下面对dp[2]操作
{
return n;
}
vector<int> dp(n + 1, 0);
dp[1] = 1;
dp[2] = 2;
for(int i = 3; i <= n; i++)
{
dp[i] = dp[i - 1] + dp[i - 2];
}
return dp[n];
}
};
使用最小花费爬楼梯
class Solution {
public:
int minCostClimbingStairs(vector<int>& cost)
{
vector<int> dp(cost.size() + 1, 0);
dp[0] = 0;
dp[1] = 0;
for(int i = 2; i <= cost.size(); i++)
{
dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[ i - 2]);
}
return dp[cost.size()];
}
};
不同路径
class Solution {
public:
int uniquePaths(int m, int n)
{
vector<vector<int>> dp(m, vector<int>(n, 0));
for(int i = 0; i < m; i++)
{
dp[i][0] = 1;
}
for(int j = 0; j < n; j++)
{
dp[0][j] = 1;
}
for(int i = 1; i < m; i++)
{
for(int j = 1; j < n; j++)
{
dp[i][j] = dp[i-1][j] + dp[i][j-1];
}
}
return dp[m - 1][n - 1];
}
};