算法题-动态规划

1动态规划理论基础

动态规划

1.1什么是动态规划

如果某一问题有很多重叠子问题,使用动态规划是最有效的
所以动态规划中每一个状态一定是由上一个状态推导出来的,这一点区分于贪心,贪心没有状态推导。

1.2动态规划的解题步骤

动态规划五步曲
1.确定dp数组(dp table)以及下标的含义
2.确定递推公式
3.dp数组如何初始化
4.确定遍历顺序
5.举例推导dp数组

2、相关力扣题

斐波那契数

题目

class Solution 
{
   
   
public:
    int fib(int n) 
    {
   
   
        if (n <= 1)
        {
   
   
            return n;
        }
        vector<int> dp(n + 1, 0);
        dp[0] = 0;
        dp[1] = 1;
        for(int i = 2; i <= n; i++)
        {
   
   
            dp[i] = dp[i-1] + dp[i-2];
        }
        return dp[n];
    }
};

注意dp数组的大小是n+1

爬楼梯

题目

class Solution {
   
   
public:
    int climbStairs(int n) 
    {
   
   
        if (n <= 1) //下面对dp[2]操作
        {
   
   
            return n;
        }
        vector<int> dp(n + 1, 0);
        dp[1] = 1;
        dp[2] = 2;
        for(int i = 3; i <= n; i++)
        {
   
   
            dp[i] = dp[i - 1] + dp[i - 2];
        }
        return dp[n];
    }
};

使用最小花费爬楼梯

题目

class Solution {
   
   
public:
    int minCostClimbingStairs(vector<int>& cost)
    {
   
   
        vector<int> dp(cost.size() + 1, 0);
        dp[0] = 0;
        dp[1] = 0;
        for(int i = 2; i <= cost.size(); i++)
        {
   
   
            dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[ i - 2]);
        }
        return dp[cost.size()];
    }
};

不同路径

题目

class Solution {
   
   
public:
    int uniquePaths(int m, int n) 
    {
   
   
        vector<vector<int>> dp(m, vector<int>(n, 0));
        for(int i = 0; i < m; i++)
        {
   
   
            dp[i][0] = 1;
        }
        for(int j = 0; j < n; j++)
        {
   
   
            dp[0][j] = 1;
        }
        for(int i = 1; i < m; i++)
        {
   
   
            for(int j = 1; j < n; j++)
            {
   
   
                dp[i][j] = dp[i-1][j] + dp[i][j-1];
            }
        }
        return dp[m - 1][n - 1];
    }
};

不同路径II

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值