1.哈希表理论基础
1.1什么是哈希表
哈希表(hash table)是根据关键码的值而直接进行访问的数据结构。
哈希表中关键码就是数组的索引下标,然后通过下标直接访问数组中的元素。
一般哈希表用来快速判断一个元素是否出现在集合里。
1.2 哈希函数
哈希函数,把学生的姓名直接映射为哈希表的索引,然后就可以通过查询索引下标快速知道这位同学是否在这所学校里。
哈希函数如下所示:通过hashcode把名字转化为数值,一般hashcode是通过特定编码方式,可以将其他数据格式转化为不同的数值,这样就把学生名字映射微哈希表上的索引数字。
1.3哈希碰撞
小李和小王都映射到了索引下标 1 的位置,这一现象叫做哈希碰撞。
一般哈希碰撞有两种解决方法。拉链法和线性探测法
1.3.1拉链法
刚刚小李和小王在索引1的位置发生了冲突,发生冲突的元素都被存储在链表中。 这样我们就可以通过索引找到小李和小王了。
1.3.2线性探测法
使用线性探测法,一定要保证tableSize大于dataSize。 我们需要依靠哈希表中的空位来解决碰撞问题。
例如冲突的位置,放了小李,那么就向下找一个空位放置小王的信息。所以要求tableSize一定要大于dataSize ,要不然哈希表上就没有空置的位置来存放 冲突的数据了。如图所示:
1.4常用的三种哈希结构
当使用哈希法来解决问题的时候,一般会选择如下三种数据结构。
- 数组
- 集合(set)
- 映射(map)
1.4.1集合(set)和映射(map)
在c++中,set和map分别提供一下三种数据结构,其底层实现以及优劣如下所示:
std::unordered_set底层实现为哈希表,std::set 和std::multiset 的底层实现是红黑树,红黑树是一种平衡二叉搜索树,所以key值是有序的,但key不可以修改,改动key值会导致整棵树的错乱,所以只能删除和增加。
std::unordered_map 底层实现为哈希表,std::map 和std::multimap 的底层实现是红黑树。同理,std::map 和std::multimap 的key也是有序的(这个问题也经常作为面试题,考察对语言容器底层的理解)。
当我们要使用集合来解决哈希问题的时候,优先使用unordered_set,因为它的查询和增删效率是最优的,如果需要集合是有序的,那么就用set,如果要求不仅有序还要有重复数据的话,那么就用multiset。
那么再来看一下map ,在map 是一个key value 的数据结构,map中,对key是有限制,对value没有限制的,因为key的存储方式使用红黑树实现的。
其他语言例如:java里的HashMap ,TreeMap 都是一样的原理。可以灵活贯通。
虽然std::set和std::multiset 的底层实现基于红黑树而非哈希表,它们通过红黑树来索引和存储数据。不过给我们的使用方式,还是哈希法的使用方式,即依靠键(key)来访问值(value)。所以使用这些数据结构来解决映射问题的方法,我们依然称之为哈希法。std::map也是一样的道理。
这里在说一下,一些C++的经典书籍上 例如STL源码剖析,说到了hash_set hash_map,这个与unordered_set,unordered_map又有什么关系呢?
实际上功能都是一样一样的, 但是unordered_set在C++11的时候被引入标准库了,而hash_set并没有,所以建议还是使用unordered_set比较好,这就好比一个是官方认证的,hash_set,hash_map 是C++11标准之前民间高手自发造的轮子。
1.5set常用函数
函数 | 说明 | 用法示例 |
---|---|---|
insert |
插入元素 | s.insert(value); |
erase |
删除元素 | s.erase(value); 或 s.erase(iterator); |
find |
查找元素 | auto it = s.find(value); |
count |
统计元素出现次数(对于 set ,要么是0要么是1) |
size_t count = s.count(value); |
size |
返回集合中的元素数量 | size_t size = s.size(); |
empty |
检查集合是否为空 | bool isEmpty = s.empty(); |
clear |
清空集合 | s.clear(); |
begin |
返回指向集合首元素的迭代器 | auto it = s.begin(); |
end |
返回指向集合尾后元素的迭代器 | auto it = s.end(); |
rbegin |
返回指向集合尾元素的逆向迭代器 | auto it = s.rbegin(); |
rend |
返回指向集合首前元素的逆向迭代器 | auto it = s.rend(); |
lower_bound |
返回指向第一个不小于给定值的元素的迭代器 | auto it = s.lower_bound(value); |
upper_bound |
返回指向第一个大于给定值的元素的迭代器 | auto it = s.upper_bound(value); |
equal_range |
返回一个范围,其中包含与给定值相等的所有元素 | auto range = s.equal_range(value); |
map常用函数
函数 | 说明 | 用法示例 |
---|---|---|
insert |
插入键值对 | m.insert({key, value}); 或 m[key] = value; |
erase |
删除键值对 | m.erase(key); 或 m.erase(iterator); |
find |
查找键 | auto it = m.find(key); |
count |
统计键出现次数(对于 map ,要么是0要么是1) |
size_t count = m.count(key); |
size |
返回映射中的键值对数量 | size_t size = m.size(); |
empty |
检查映射是否为空 | bool isEmpty = m.empty(); |
clear |
清空映射 | m.clear(); |
begin |
返回指向映射首键值对的迭代器 | auto it = m.begin(); |
end |
返回指向映射尾后键值对的迭代器 | auto it = m.end(); |
rbegin |
返回指向映射尾键值对的逆向迭代器 | auto it = m.rbegin(); |
rend |
返回指向映射首前键值对的逆向迭代器 | auto it = m.rend(); |
lower_bound |
返回指向第一个不小于给定键的键值对的迭代器 | auto it = m.lower_bound(key); |
upper_bound |
返回指向第一个大于给定键的键值对的迭代器 | auto it = m.upper_bound(key); |
equal_range |
返回一个范围,其中包含与给定键相等的所有键值对 | auto range = m.equal_range(key); |
at |
返回指定键的值(带边界检查) | value = m.at(key); |
operator[] |
返回指定键的值(如果键不存在则创建) | value = m[key]; |
2.相关算法题
2.1有效的字母异位词
class Solution {
public:
bool isAnagram(string s, string t)
{
if(s.size() != t.size())
{
return false;
}
unordered_map<char, int> s_map;
for(int i = 0; i < s.size(); i++)
{
s_map[s[i]]++;
s_map[t[i]]--;
}
for(auto it : s_map)
{
if (it.second != 0)
{
return false;
}
}
return true;
}
};
2.2两个数组的交集
class Solution
{
public:
vector<int> intersection(vector<int>& nums1, vector<int>& nums2)
{
unordered_set<int> st(nums1.begin(), nums1.end());
unordered_set<int> res_st;
for (auto num2 : nums2)
{
if(st.find(num2) != st.end