
图像处理
文章平均质量分 64
bblingbbling
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
图像滤波器算法总结及代码实现
图像滤波器算法总结概述均值滤波方框滤波高斯滤波中值滤波双边滤波概述线性滤波:方框滤波、均值滤波、高斯滤波非线性滤波: 最大最小值滤波、中值滤波、双边滤波高通滤波:去掉低频信号,留下高频信号。留下图像边界。低通滤波:去掉高频信号,留下低频信号。去噪,模糊图像。均值滤波一种低通线性滤波器,可以用来消除图像尖锐噪声,实现图像平滑、模糊。opencv代码:cv2.blur(img, (5, 5))python代码实现:def blur(img, size): mask = np.on原创 2021-01-21 17:35:32 · 1083 阅读 · 0 评论 -
图像二值化代码实现
图像二值化代码实现固定阈值二值化Otsu 阈值二值化自适应阈值二值化固定阈值二值化opencv实现:ret, th = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)cv2.imshow('opencv', th)python实现:thresh = 127new_img = np.zeros((h,w),np.uint8)for i in range(h): for j in range(w): if gray[i,原创 2021-01-18 20:54:13 · 2513 阅读 · 0 评论 -
SURF特征提取
SURF特征提取概述算法流程相比SIFT改进的方面代码实现概述SURF,全称Speeded-up Robust Feature,是SIFT算法的改进版和加速版,综合性能更优。由Herbert Bay发表在2006年的欧洲计算机视觉国际会议(Europen Conference on Computer Vision,ECCV)上。SURF算法利用了积分图、特征描述子降维提升了计算效率。算法流程SURF算法的基本流程和SIFT一样,但是在特征提取、尺度空间、特征点主方向和描述子方面会有不同。SURF原创 2021-01-17 16:46:47 · 3450 阅读 · 1 评论 -
SIFT特征提取
SIFT特征提取概述算法原理及流程建立高斯差分金字塔极值点检测确定关键点的主方向构建关键点描述符概述SIFT算法由D.G.Lowe 1999年提出,2004年完善总结。SIFT (Scale-invariant feature transform), 尺度不变特征转换,是一种图像局部特征提取算法,它通过在不同的尺度空间中寻找极值点(特征点,关键点)的精确定位和主方向,构建关键点描述符来提取特征。SIFT提取的关键点具有尺度不变性、旋转不变性,而且不会因光照、仿射变换和噪音等因素而干扰。SIFT所查找原创 2021-01-17 15:25:13 · 7794 阅读 · 2 评论 -
FAST角点检测
FAST角点检测概述算法流程算法特点代码实现概述FAST,全称Features From Accelerated Segment Test,是一种快速的角点检测算法。该算法的核心思想是加上合适的阈值t来和邻域像素的灰度值进行比较来确定是否角点。算法流程1.在图像中选取一个像素P,其像素值为Ip;2.以该像素点为中心画一个半径为3像素的离散化圆,这个圆的边界上有16个像素;3.设置一个阈值t;4.如果在这个大小为16个像素的圆上有n个连续的像素值都比Ip+t大,或者都比Ip−t小,那么它就是一原创 2021-01-17 11:47:29 · 1436 阅读 · 0 评论 -
Harris角点检测
Harris角点检测原理灰度变化描述检测流程及代码Opencv函数算法特点原理Harris角点检测是在灰度图上,设置一个局部窗口向多个方向随意平移,通过判断窗口内像素值有无明显变化判断有无角点的一种角点检测方法。灰度变化描述检测流程及代码1.计算图像(灰度图)的水平和竖直方向的梯度Ix,Iy;img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)Dx = cv2.Sobel(img,cv2.CV_32F,1,0,ksize=ksize)Dy = cv2.S原创 2021-01-15 20:54:27 · 363 阅读 · 1 评论 -
拉普拉斯算子Laplace
拉普拉斯算子Laplace概述算子模板应用原理opencv代码效果展示概述定义:拉普拉斯算子是n维欧几里德空间中的一个二阶微分算子,定义为梯度(▽f)的散度(▽·f),函数 f 的拉普拉斯算子▽2f 又可以写成▽·▽f。拉普拉斯算子是一种各向同性微分算子,它具有旋转不变性。一个二维图像函数的拉普拉斯变换是各向同性的二阶导数。求导阶数:二阶求导。拉普拉斯算子 (Laplace) 作用:1.对图像进行边缘检测;2.锐化图像;3.判断模糊。算子模板邻域系统是4或8邻域的Laplacian原创 2020-11-17 16:16:21 · 18098 阅读 · 0 评论 -
图像仿射变换和透视变换
仿射变换和透视变换概述仿射变换透视变换概述1.仿射变换:应用在二维平面中,主要包括旋转,平移,缩放,裁剪,反转,可以保证图像物体的形状的平行性。2.透视变换:应用在三维空间中,不能保证物体的平行性。3.仿射变换是透视变换的子集。仿射变换仿射变换是一种二维坐标到二维坐标之间的线性变换,任意的仿射变换都能表示为乘以一个矩阵(线性变换),再加上一个向量 (平移) 的形式。变换矩阵为2x3维度。方程组有6个未知数,需要求解3组映射点,三个点确定一个平面。#创建一个2*3的矩阵#p1、p2分别为原创 2020-11-11 21:36:10 · 593 阅读 · 0 评论 -
sobel和canny边缘检测算子
sobel和canny边缘检测算子sobel算子步骤具体过程代码实现canny算子步骤具体过程代码实现sobel算子和canny算子比较sobel算子sobel算子是一种离散微分算子,它通过计算图像亮度值变化的近似梯度,从而识别出图像边缘。步骤1.高斯平滑;2.微分求导。具体过程1.高斯模糊平滑目的是为了去噪,防止把噪点也检测为边缘。2.对原图分别进行水平方向和垂直方向的卷积(x和y两个方向求导),来计算某个像素的梯度变化幅值和方向。3.给定一个阈值就可以得到sobel算子计算出的图像边缘原创 2020-10-29 18:07:39 · 7050 阅读 · 0 评论 -
opencv求解图像轮廓记录
opencv求解图像轮廓记录寻找轮廓绘画轮廓计算轮廓的特征点到轮廓的距离寻找轮廓针对二值化图像,轮廓是针对白色物体的,所以先反色,不然会有图像大框。函数:cv2.findContours()import cv2img = cv2.imread('1.jpg')img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)ret, thresh = cv2.threshold(img_gray, 0, 255, cv2.THRESH_BINARY_INV + c原创 2020-10-24 12:22:53 · 215 阅读 · 0 评论 -
HOG图像特征提取算法
HOG图像特征提取算法HOG简介HOG计算步骤HOG参数计算HOG提取特征效果HOG代码实现HOG简介HOG全称:方向梯度直方图(Histogram of Oriented Gradient),发表于2005年的CVPR,是一种图像特征提取算法,和SVM分类器结合应用于行人检测领域。HOG通过计算图像中每个像素的梯度的大小和方向,来获取图像的梯度特征,是一种特征描述子。HOG计算步骤1.对输入图像进行灰度化2.利用gamma校正法对图像进行颜色空间归一化;3.计算图像中每个像素的梯度大小和方向;原创 2020-07-07 20:39:34 · 5474 阅读 · 0 评论 -
图像resize方法
图像缩放方法opencv函数插值方法总结PIL函数插值方法opencv函数cv2.resize(img, (w, h), interpolation=cv2.INTER_CUBIC)插值方法opencv提供了5种插值方法:interpolation插值方法说明INTER_NEAREST最近邻插值选取离目标点最近的点作为新的插入点INTER_LINEAR双线性插值(默认)以距离为权重INTER_AREA区域插值像素关系重采样INTER_CUBIC原创 2020-06-22 17:17:49 · 790 阅读 · 0 评论