题意:给定n个点m条边,每个点都有权值,然后开始删除点,删点规则是这个点连接其他点的数量小于2,如果删除了某些点产生了其他可删除的点也将其删除。直到删除到不能为止。问最后剩余的联通块中,点的数量是奇数的联通块中的点的权值和。
先对所有点进行拓扑排序,把如果拓扑排序的点都比较一下,这些点是被删除点。然后剩下了一些点,用这些点做并查集,在一个集合里的所有点就是一个联通块...
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<iostream>
#include<stack>
using namespace std;
#define MAXN 103000
#define ll long long
struct edge
{
int u,v,next;
}edge[MAXN*2];
int t,head[MAXN];
int a[MAXN],d[MAXN],used[MAXN];
void inti()
{
t=0;
memset(head,-1,sizeof(head));
memset(d,0,sizeof(d));
memset(used,0,sizeof(used));
}
void add(int u,int v)
{
edge[t].v=v;
edge[t].next=head[u];
head[u]=t++;
}
void tuopu(int n)
{
stack<int> s;
for(int i=1;i<=n;i++)
{
if(d[i]<=1)
{
used[i]=1;
s.push(i);
}
}
while(!s.empty())
{
int u=s.top();
s.pop();
for(int i=head[u];i!=-1;i=edge[i].next)
{
int v=edge[i].v;
if(used[v]==0)
{
d[v]--;
if(d[v]==1)
{
s.push(v);
used[v]=1;
}
}
}
}
}
int x[MAXN],y[MAXN],f[MAXN],r[MAXN];
ll sum[MAXN];
int finde(int x)
{
if(x!=f[x])
return f[x]=finde(f[x]);
return x;
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
int n,m;
inti();
scanf("%d %d",&n,&m);
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
}
for(int i=0;i<m;i++)
{
scanf("%d %d",&x[i],&y[i]);
add(x[i],y[i]);
add(y[i],x[i]);
d[x[i]]++;
d[y[i]]++;
}
tuopu(n);
for(int i=1;i<=n;i++)
{
f[i]=i;
sum[i]=a[i];
r[i]=1;
}
for(int i=0;i<m;i++)
{
if(used[x[i]]==0&&used[y[i]]==0)
{
int u=finde(x[i]);
int v=finde(y[i]);
if(u!=v)
{
f[u]=v;
sum[v]+=sum[u];
r[v]+=r[u];
}
}
}
ll ans=0;
for(int i=1;i<=n;i++)
{
if(f[i]==i&&used[i]==0&&r[i]%2==1)
{
ans=ans+sum[i];
}
}
printf("%I64d\n",ans);
}
return 0;
}