图解Pandas

Pandas是数据挖掘常见的工具,掌握使用过程中的函数是非常重要的。这里将借助可视化的过程,讲解Pandas的各种操作。

sort_values

(dogs[dogs['size'] == 'medium']
 .sort_values('type')
 .groupby('type').median()
)
执行步骤:

•size列筛选出部分行

•然后将行的类型进行转换

•按照type列进行分组,计算中位数、

image.png

image.png

image.png

selecting a column

dogs['longevity']

groupby + mean

dogs.groupby('size').mean()
执行步骤:

•将数据按照size进行分组

•在分组内进行聚合操作

image.png

image.png

grouping multiple columns

dogs.groupby(['type', 'size'])

image.png

groupby + multi aggregation

(dogs
  .sort_values('size')
  .groupby('size')['height']
  .agg(['sum', 'mean', 'std'])
)
执行步骤

•按照size列对数据进行排序

•按照size进行分组

•对分组内的height进行计算

image.png

image.png

filtering for columns

df.loc[:, df.loc['two'] <= 20]

image.png

filtering for rows

dogs.loc[(dogs['size'] == 'medium') & (dogs['longevity'] > 12), 'breed']

image.png

dropping columns

dogs.drop(columns=['type'])

joining

ppl.join(dogs)

merging

ppl.merge(dogs, left_on='likes', right_on='breed', how='left')

pivot table

dogs.pivot_table(index='size', columns='kids', values='price')

image.png

melting

dogs.melt()

image.png

pivoting

dogs.pivot(index='size', columns='kids')

stacking column index

dogs.stack()

unstacking row index

dogs.unstack()

image.png

resetting index

dogs.reset_index()

image.png

setting index

dogs.set_index('breed')

image.png

 更多数据分分析相关文章、专栏请访问:数据分析社区 | 巨人肩膀

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值