文生图模型

CogView3/README_zh.md at main · THUDM/CogView3 · GitHub

快速开始

提示词优化

虽然 CogView3 系列模型都是通过长篇合成图像描述进行训练的,但我们强烈建议在文本生成图像之前,基于大语言模型(LLMs)进行提示词的重写操作,这将大大提高生成质量。

我们提供了一个 示例脚本。我们建议您运行这个脚本,以实现对提示词对润色

python prompt_optimize.py --api_key "智谱AI API Key" --prompt {你的提示词} --base_url "https://open.bigmodel.cn/api/paas/v4" --model "glm-4-plus"

推理模型(Diffusers)

首先,确保从源代码安装diffusers库。

pip install git+https://github.com/huggingface/diffusers.git

接着,运行以下代码:

from diffusers import CogView3PlusPipeline
import torch

pipe = CogView3PlusPipeline.from_pretrained("THUDM/CogView3-Plus-3B
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值