
关于通信、信号处理、深度学习和强化学习的仿真
文章平均质量分 87
以若干通信、信号处理、深度学习和强化学习具体案例为主题的仿真,提供基本原理、算法流程介绍,展示全部或主体代码、注释及主要思路。欢迎定制需求咨询
优惠券已抵扣
余额抵扣
还需支付
¥19.90
¥99.00
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
Older司机渣渣威
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
极化码简介及示例
通过信道极化的特性,极化码能够将信息比特放置在可靠的信道上传输,从而提高数据传输的可靠性和效率。极化码的原理基于信道极化的现象。信道极化是指通过特定的编码方法,将一组独立的物理信道转化为两类极端信道:一类是完全可靠的信道,另一类是完全不可靠的信道。极化码正是利用这种信道极化的特性,将信息比特放置在可靠的信道上传输,而将固定值(如0)放置在不可靠的信道上传输,从而提高数据传输的可靠性和效率。极化码(Polar Codes)作为一种在通信领域中广泛应用的编码技术,具有独特的机理、编解码过程以及广泛的应用领域。原创 2025-01-04 00:30:00 · 1808 阅读 · 0 评论 -
手撸一个全连接网络
这里实现不使用任何框架(如TensorFlow或PyTorch),而是从基本的矩阵运算来模拟神经网络的前向传播和反向传播,手撸一个全连接网络,使用随机梯度下降(SGD)来更新权重和偏置。y = np.array([[0], [1], [1], [0]]) # XOR问题的标签(异或操作)A2 = sigmoid(Z2) # 对于二分类问题,可以使用sigmoid激活函数。# 示例数据(X为输入特征,y为目标标签)# 激活函数(Sigmoid)及其导数。# 计算损失函数的导数。# 损失函数(均方误差)原创 2025-01-03 00:30:00 · 964 阅读 · 0 评论 -
卡尔曼滤波定义及主要应用
卡尔曼滤波(Kalman Filtering)是一种利用线性系统状态方程,通过系统输入输出观测数据,对系统状态进行最优估计的算法。该算法由鲁道夫·卡尔曼(Rudolf E. Kalman)在1960年提出,是一种基于最小均方误差准则的最优估计方法。其核心思想在于通过结合预测值和测量值,赋予更可靠的信息更高的权重,从而得到系统状态的最优估计。卡尔曼滤波假设系统是线性的,并且噪声是高斯分布的。它适用于线性、离散和有限维系统。在卡尔曼滤波的过程中,系统状态通过预测和更新两个步骤进行迭代估计。原创 2025-01-02 00:30:00 · 1337 阅读 · 0 评论 -
软解调详解
在这个示例中,生成了一个随机的比特序列,将其调制为QPSK信号,添加了高斯白噪声,然后计算了每个比特的LLR,并根据LLR的符号进行了解调判决。软解调是一种基于接收信号的概率估计进行解调的方法。与传统的硬解调相比,软解调不仅考虑了接收信号的幅度和相位信息,还利用统计特性计算每个比特为0或1的概率,从而提高了解调性能。软解调过程中涉及的主要公式包括对数似然比(LLR)的计算公式、信号的概率分布函数以及解调判决公式等。软解调的计算处理流程包括信号接收、预处理、相位估计、LLR计算、解调判决和输出等步骤。原创 2024-12-30 01:02:01 · 1007 阅读 · 0 评论 -
GSSK系统详解:系统模型、处理流程、信号检测方法及Matlab代码示例
ML检测算法的核心思想是遍历所有可能的天线组合,计算每个天线组合对应的接收信号与原始信号之间的欧氏距离,选择欧氏距离最小的天线组合作为检测结果。其性能接近ML检测算法,但复杂度较低。此外,代码中的信号是随机生成的,且每个激活天线上的信号是相同的。ML检测是最优的检测算法,其核心思想是遍历所有可能的天线组合,计算每个天线组合对应的接收信号与原始信号之间的欧氏距离,选择欧氏距离最小的天线组合作为检测结果。发射端负责将输入的比特信息映射到激活的天线组合上,而接收端则负责检测接收到的信号,以恢复原始的比特信息。原创 2024-12-29 02:45:00 · 387 阅读 · 0 评论 -
“具有分布式能源资源的多个智能家庭的能源管理的联邦强化学习”文章学习二
在每个本地设备的训练过程完成后,其模型被传输并聚合到一个全局系统中,以估计所有本地设备的全局模型ωG,表示如下:ωG = f(ω1, ω2,...,ωN )。A2C通过适应基线,即优势,来提高DRL算法的性能和稳定性,该优势定义为Aπθ(st, at) = Qπθ(st, at) - Vπθ(st)。Vπθ(st)表示在策略πθ下状态st的值,它被定义为智能体将在状态st中获得的折扣累积未来奖励的期望值:Vπθ(st) = E[Rt+1 + γRt+2 + γ2Rt+3 + ···|s = st]。原创 2023-11-16 08:45:00 · 325 阅读 · 0 评论 -
“具有分布式能源资源的多个智能家庭的能源管理的联邦强化学习”文章学习一
设计一个与储能系统(ESS)集成的家庭能源管理系统(HEMS) [5],同时考虑通过ESS进行双向能源控制 [6],以及开发基于分层优化技术的HEMS,包括本地HEMS和全局HEMS,以实现多个智能家庭的能源管理 [7]。此外,我们还证明了即使有更多的DRL代理加入FRL网络,提出的FRL方法仍然可以保持良好的性能。与传统的以云为中心的机器学习模型不同,在本文中,我们提出了一种使用联邦强化学习的分层分布式机器学习框架,该框架可以优化安排多个智能家庭中的空调、窗户和ESS的能源消耗,同时确保消费者的舒适度。原创 2023-11-15 07:15:00 · 463 阅读 · 0 评论 -
“具有分布式能源资源的多个智能家庭的能源管理的联邦强化学习”文章学习三——基于联邦深度学习的多智能家居能源管理
对于AC,给定状态SAC包括电价、室外温度和室内温度(如4所示),AC代理通过最大化Rt AC(如8所示)来决定AC的最优能耗调度[即,动作Et AC(7)],该函数为负电价和与室内温度相关的消费者舒适成本的之和。对于ESS,给定状态SESS包括电价、SOE和预测的PV发电量(如6所示),ESS代理通过最大化Rt ESS(如10所示)来计算ESS的最优充放电调度[即,动作Et ESS(7)],该函数为负电价和与ESS过充电和欠充电相关的可靠运行成本的之和。3)具有可中断负载的可调度设备(ESS)。原创 2023-11-17 08:45:00 · 500 阅读 · 0 评论 -
循环对称复高斯分布(Circularly Symmetric Complex Gaussian Distribution)
作为一种特殊的复高斯分布,CSCG具有独特的性质,如循环对称性、高斯性等,这使得它在描述无线通信系统中的噪声、信号等方面具有独特的优势。在IRS辅助的通信系统中,接收到的信号包括直接路径的信号和经过IRS反射的信号。通过优化IRS的反射系数和发射功率,可以最大化接收信号的信噪比(SNR),从而提高系统的性能。循环对称复高斯分布是指复随机变量Z=X+iY(其中X和Y分别为实部和虚部)的实部和虚部都是独立同分布的零均值高斯随机变量,并且具有相同的方差σ²。CSCG分布的实部和虚部都是独立同分布的高斯随机变量。原创 2024-12-28 00:15:00 · 1871 阅读 · 0 评论 -
“具有分布式能源资源的多个智能家庭的能源管理的联邦强化学习”文章学习四——基于联邦深度学习的多智能家居能源管理
我们考虑的是在连续动作空间中由相应的智能体安排空调、WM和ESS的能量消耗的情况。在图3(a)的TOU关税以及图3(b)的预测室外温度和图3(c)的光伏发电能量下,工作机械、空调和储能系统的操作由提出的HEMS控制24小时,1小时调度解析度。b)计算上一步选择的行动at,从行动中获得奖励Rt,并用Q(st, at)和状态V(st)的值计算A(st, at),以更新演员网络(第9行)。第七,新生成的全局模型ωGnew被分配给所有的LHEMSs,它们根据ωGnew训练自己的本地模型(第19,20行)。原创 2023-11-18 08:30:00 · 552 阅读 · 0 评论