自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(68)
  • 收藏
  • 关注

原创 前端AI生码技术的创新实践

就像一个眼神好但有点色弱的画师(WeaveFox)画出了轮廓,然后一位严谨的配色师(设计规范)为他填充了标准色,最后一位拿着设计原稿的质检员(DSL召回)检查并修正了所有细节。这篇文章为你展示了如何像一名系统架构师一样思考,将一个复杂问题拆解,并用工程化的手段,一步步构建出一个优雅、高效的解决方案。这篇文章提供了一个非常精彩的AI工程实践案例。这套方案的成功建立在三个关键的技术点之上,它们形成了能力互补的“铁三角”。为了解决上述痛点,文章提出了一套整合了。这个流程将原本复杂的多步操作,简化为了。

2025-08-08 18:51:17 661

原创 硬核拆解大模型

文章开篇就提出了一个深刻的观察:从 2019 年的 GPT-2 到 2025 年的 Llama 4 和 Kimi K2,尽管模型能力天翻地覆,但其。归一化层像训练过程中的“稳定器”,防止梯度爆炸或消失。注意力机制是 Transformer 的核心,决定了模型如何处理上下文。MoE (Mixture-of-Experts) 是 2025 年的“回归之王”,旨在用。的方式,在不显著增加推理计算量的前提下,大幅提升模型参数量(知识容量)。文章详细拆解的技术点,可以清晰地归纳为以下四个关键领域的演进。

2025-08-08 18:35:12 543

原创 SVG 技术深度解析:从入门到动画

这篇文章是一篇非常友好的 SVG 入门指南,它不仅介绍了 SVG 的基础知识,更重要的是揭示了其作为一种可编程图形格式的强大威力。:你可以用 JavaScript 监听 SVG 元素的事件、动态修改其属性,创造丰富的交互体验。文章首先点明了 SVG (Scalable Vector Graphics) 的核心本质。这是文章强调的重点,也是 SVG 区别于普通图片格式的“超能力”所在。SVG 提供了一系列基础的形状标签,就像 HTML 提供了。/* 对半径和y坐标的变化应用过渡动画 *//* 默认样式 */

2025-08-08 12:57:09 527

原创 Node.js for 2025

Node.js 正在经历一场“成年礼”。它正在从一个轻量级、高度灵活但需要大量“组装”的“乐高积木”,演变为一辆装备精良、自带导航和安全系统的“现代化汽车”。其核心是**“标准化”最后,文章描绘了一个更宏大的图景:Node.js 不再仅仅是“一个运行JS代码的东西”,它正在演变为一个包含安全、性能、部署、诊断的全方位平台。这一部分聚焦于文章提到的具体技术点,以及它们如何改变了程序员的编码习惯。“内置化”**,目标是提升开发效率、代码健壮性和应用安全性。

2025-08-08 12:51:03 580

原创 MetaAgent框架——让AI自己设计AI

MetaAgent 利用大语言模型(LLM)作为“总设计师”,通过三个阶段,将抽象的任务描述转化为具体的、可执行的 FSM。文章指出了当前构建强大、通用的多智能体系统面临的三大核心障碍,这也是 MetaAgent 试图解决的痛点。这篇文章为我们打开了一扇新的大门,从“使用 Agent”上升到了“设计 Agent 的生产线”。MetaAgent 的核心思想极具颠覆性。它不再是直接“制造”智能体,而是。的元框架(Meta-Framework)。

2025-08-07 12:11:40 403

原创 Agent框架——Cognitive Kernel-Pro

click_id=4。

2025-08-07 12:03:59 585

原创 Transformer 架构全景解析

这篇文章可以看作是一部关于 Transformer 的“传记”,它讲述了 Transformer 的“家世背景”(为什么被发明)、“核心天赋”(工作原理)、“巨大成就”(为何能统治 AI 领域)以及它的“后代们”(衍生模型)。Transformer 的成功本质上是一次计算范式的胜利。它用可高度并行的全局关联计算(自注意力)取代了难以并行的串行依赖计算(RNN),解决了长距离遗忘问题,并极大地释放了现代硬件(GPU)的潜力,使得训练前所未有的大模型成为可能。辩证看待:并行能力强、全局视野好。

2025-08-06 12:49:04 537

原创 混合检索数据库PolarDB介绍

它没有把数据库仅仅看作一个“存储后端”,而是将其升级为一个**“内置AI能力的智能数据处理平台”**。它将原本分离的三个环节统一到了一个系统中,实现了“用SQL管理向量全生命周期”。开发者无需关心向量的生成、存储和索引维护,一切都在熟悉的SQL环境中自动完成。在构建RAG(检索增强生成)或Agent记忆这类AI应用时,开发者普遍面临一个。现在,使用PolarDB,你只需要。

2025-08-05 18:36:04 485

原创 AI 智能体意图识别的进化之路

自然语言理解(NLU)。判断用户想做什么。这是对话的“方向盘”,如果方向错了,后续一切都毫无意义。就像你去餐厅,服务员首先要搞清楚你是想“点餐”、“结账”还是“找洗手间”。提取用户请求中的关键参数。这是执行任务的“清单”,缺少了关键信息,任务就无法完成。你说“点餐”,服务员接着会问“点什么菜?”、“几人份?”、“有没有忌口?这些就是槽位。这两个任务共同将人类模糊、非结构化的自然语言,转换为机器可以理解和执行的、结构化的指令。这篇文章的全部内容,都是围绕如何更准确、更高效、更健壮地完成这个转换过程。

2025-08-05 12:12:08 688

原创 DeepSieve 框架,解决RAG多源异构知识难题

文章首先一针见血地指出了当前检索增强生成(RAG)技术面临的两大“天花板”级别的难题,这也是 DeepSieve 框架诞生的背景。逻辑推理的“单行道”:无法处理“多跳(Multi-hop)”问题传统 RAG 的工作模式是“一步到位”的语义匹配。它将一个复杂问题的所有关键词混合在一起,形成一个模糊的查询意图,试图在知识库中一次性找到一个“完美匹配”的文档。这就像一个不擅长规划的快递员。

2025-08-05 12:03:17 894

原创 AI 及开发领域动态与资源汇总(2025年8月4日)

好的,我已经将您提供的内容整理成一个结构化的表格,并对信息进行了分类和提炼。

2025-08-04 18:45:23 442

原创 分析基于 Tablestore 的轻量级 Memory 框架实践

文章开篇点明了 AI Agent 的核心挑战。一个完整的 AI Agent 不仅仅是一个大型语言模型(LLM),它更像一个智能体,其公式可以隐喻为:[ \text{AI Agent} = \text{LLM (大脑)} + \text{Memory (记忆)} + \text{Planning (规划)} + \text{Tools (工具)} ]Memory (短期/情景记忆):记录即时发生的对话、事件和状态。好比人类的“工作记忆”,用于处理眼前的任务。需要毫秒级的快速响应、支持高并发。

2025-08-04 18:39:20 516

原创 解析从单智能体到多智能体的React框架设计与实现

如何将通用的大语言模型(LLM)能力,转化为能解决复杂、多步骤领域问题的专用、高效且灵活的AI工具?作者认为,简单的“提示词→LLM→答案”模式生产力有限。为了解决复杂任务,AI需要像人一样具备**“思考-行动-观察”的循环能力。这就是React(Reason + Act)框架**的核心思想。传统的LLM应用像一个计算器,你输入一个问题,它直接给一个答案。而React框架下的智能体(Agent)更像一个手艺人。面对“打造一把椅子”的任务,手艺人不会一步到位。

2025-08-04 12:30:04 847

原创 AI 及开发领域动态与资源汇总(2025年8月1日)

2025-08-01 20:14:11 768

原创 大语言模型LLM原理

这篇文章可以看作是一部关于大语言模型(LLM)的“前世今生”与“解剖全书”。它从“是什么”出发,追溯了其“从哪来”的历史,深入剖析了其内部“如何工作”的核心机制,最后解释了其“如何实现”的工程挑战。:当模型看到 “The cat sat on the mat” 时,它如何理解 “it” 在 “it was tired” 中指的是 “cat” 而不是 “mat”?如果说前馈传播是模型“思考”的过程,那么反向传播就是模型“反思和学习”的过程。这部分从工程实践角度,解答了“如何用现有硬件训练如此庞大的模型”。

2025-08-01 19:58:28 568

原创 解析:为什么思维链(Chain-of-Thought, CoT)提示能够显著提升大型语言模型(LLM)的推理能力

用结构化模板进行模仿,用模仿来收窄概率分布,并根据任务类型动态调整神经元的激活策略(剪枝或放大)。它给我们的最大启发是:我们应该从一个**“概率优化师”**而非“人类教师”的角度去设计提示词。我们的目标不是“教会”模型如何思考,而是通过提供精巧的“脚手架”(结构化提示),来引导模型的概率流向我们期望的结果。下一步的实践建议建立你自己的CoT模板库: 针对你常用的任务(如代码生成、数据分析、文章总结),创建几个高效的、结构化的CoT模板。A/B测试。

2025-08-01 13:08:07 728

原创 用 uv 来运行 Python 脚本

就包含运行它所需要的所有信息(如依赖包、Python 版本)。它抽象掉了虚拟环境的底层细节,让开发者更专注于代码逻辑本身。将 Python 脚本从一个单纯的“代码文件”提升为了一个“规范,将依赖直接写在 Python 脚本的注释里。这个过程是原子化的,极大地简化了工作流。提供了命令来帮你管理这个元数据块。它推崇一种声明式的方法:让脚本文件。参数,适合一次性运行或测试。会自动读取这个块并安装依赖。在脚本运行方面的本质是。的顶部生成或更新一个。

2025-08-01 12:49:49 759

原创 深度解析:为何 Java 在 2025 年仍是开发者值得信赖的顶级语言

其核心优势在于:语言本身在持续进化以降低开发者的认知负担、无与伦比的向后兼容性保障了技能的长期价值,以及一个充满活力、选择多样且乐于助人的社区生态。一份基于资深开发者 25 年经验的全面总结,剖析 Java 持久不衰的生命力、持续的自我革新及其强大的生态系统。Java 的发展哲学完美契合了这一点,它不断推出新特性,旨在让代码的意图更清晰,逻辑更贴近人类的自然思维。这极大地简化了并发编程的复杂性,开发者不再需要学习复杂的反应式编程范式,就能轻松构建高可扩展性的系统。它通过持续的版本迭代,

2025-08-01 12:20:11 745

原创 全面解析CNN:从数学原理到代码实践的计算机视觉核心

而CNN中的一个卷积核只处理图像的一小块区域(局部连接),并且这个卷积核的参数在整张图像上是共享的,这使得模型参数量极大降低,训练效率显著提升。而CNN通过在图像上滑动的卷积核,逐层提取从局部到全局的特征,完美地利用了这一结构信息。通过在多个卷积层中堆叠这些操作,CNN能够从简单的边缘、颜色块,逐步构建出物体的部件、乃至整个物体等越来越复杂的特征表示。一个典型的CNN模型由多个功能层堆叠而成,像一条精密的流水线,逐步将原始像素转化为高级语义特征。要理解CNN,必须先理解“卷积”这一数学运算的本质。

2025-08-01 12:15:07 528

原创 AI 及开发领域动态与资源汇总(2025年7月31日)

2025-07-31 18:51:21 397

原创 上下文管理分析

这篇文章结构清晰,逻辑严谨。它首先定义了问题的本质,然后通过丰富的案例和研究数据剖析了问题的具体表现(四大失效模式),最后给出了系统性的解决方案(六种管理策略),形成了一个从“是什么”到“为什么”再到“怎么办”的完整闭环。AI 智能体的“智能”不仅仅体现在大模型的推理能力上,更体现在其驾驭和管理信息流的能力上。长上下文窗口为我们提供了更高的“天花板”,但这需要我们用更精细、更巧妙的工程方法去利用它。未来的 AI 工程化,很大程度上就是上下文工程化。

2025-07-31 12:29:13 582

原创 大模型后训练技术解析

核心洞察:大模型的未来发展,已从单纯依赖预训练的“堆料”模式,转向了后训练阶段的精细化、结构化、智能化的“雕琢”模式。强化学习和推理时计算优化,是挖掘模型潜力的关键。给你的实践建议动手实践PEFT:从LoRA开始。找一个开源模型(如Qwen, Llama),选择一个你感兴趣的小任务(如特定风格的文本生成、代码翻译),使用Hugging Face的peft库,亲手实践一下LoRA微调。你会直观地感受到其高效和便捷。将“慢思考”融入你的代码:在你自己的项目中,可以借鉴<think>标签的思想。

2025-07-31 12:21:49 880

原创 AI 及开发领域动态与资源汇总(2025年7月30日)

2025-07-30 19:10:59 252

原创 从“编码者”到“AI指挥官”的跃迁

文章的灵魂在于作者提出的核心观点:我们不应与AI比拼“写代码”的速度和技巧,这就像马车与汽车赛跑,毫无意义。这篇文章的核心,是探讨一名程序员在AI浪潮下,如何通过两年半的实践,将自己的工作与生活模式进行了一次彻底的重塑。作者通过分享自己的工作流、工具链和思维模式的转变,为我们描绘了一幅AI深度融合时代下,知识工作者的未来图景。作者将一个完整的工作流程拆解为三个阶段,并详细阐述了AI在每个阶段的应用,这为我们提供了一个极佳的实践蓝图。它告诉我们,真正的变革,始于工具,成于思想。

2025-07-30 19:07:58 537

原创 RLHF技术实践分析

文章开篇指出了一个根本性问题:无论是语言模型还是文生图模型,它们通过在海量数据上进行自监督预训练,学会的是数据的“平均分布”,但这并不等同于人类期望的“理想行为”。文生图的“好坏”维度更复杂(语义、美学、结构合理性),传统评价指标(如FID, CLIPScore)无法全面衡量,而一个好的RM可以成为更贴近人类感知的评估标准。它不再让模型去被动地拟合静态数据集,而是让模型在一个“人类偏好”的指导下,主动探索如何生成更令人满意的结果。RLHF在文生图领域的应用逻辑一脉相承,但针对扩散模型的特性进行了适配。

2025-07-30 18:39:40 523

原创 AI 及开发领域动态与资源汇总(2025年7月29日)

slime。

2025-07-29 20:46:09 707

原创 《智能体常见的记忆(Memory)策略与技术实现》解析

记忆策略并非单纯的“存储”,而是一套关于“如何选择性遗忘、如何高效压缩、以及如何在需要时精准回忆”的智能管理系统。解决复杂问题时,可以先从最简单的方案入手,然后不断识别其瓶颈,并引入更高级的抽象和机制来解决它。

2025-07-29 20:19:24 826

原创 Claude Sub-Agent介绍

Claude Sub-Agent 通过“角色化”和“上下文隔离”的核心机制,将单一的通用型AI转变为一个可指挥的、由多个专家组成的AI团队。它通过系统提示、工具权限和独立上下文三大支柱“焊定”了每个专家的角色,解决了传统AI编程中的“上下文失控”问题。这不仅提升了开发效率和准确性,更从根本上改变了人机协作的范式,将开发者从“监工”提升为“领导者”,将精力重新聚焦于更高层次的创造性工作。

2025-07-29 20:01:52 708

原创 如何写系统提示词

这篇文章的核心论点是:我们应该停止将编写复杂提示词(Prompt)看作是“堆砌规则”的手工艺,而应将其提升为一种“构建系统”的软件工程。文章最后通过一个详尽的“AI编程助手”提示词重构案例,完整展示了这套方法论如何将一个混乱的“毛线球”重构为一座结构清晰的“摩天大楼”。希望这份系统性的总结能帮助你更深刻地理解这篇文章的精髓,并将其运用到你的代码实践和对AI的探索中。它认为,一个强大的AI智能体,并非诞生于“更多”的规则,而是诞生于“更好”的结构。设计好的蓝图是给人看的,而最终的提示词是给AI看的。

2025-07-29 19:06:35 800

原创 AI 及开发领域动态与资源汇总(2025年7月28日)

【代码】AI 及开发领域动态与资源汇总(2025年7月28日)

2025-07-28 20:59:38 607

原创 构建企业级 AI 应用的实践全景

成功的企业级 AI 应用(AI Agent)不仅仅是几行聪明的代码,而是一个复杂的、需要系统性工程方法来构建的智能系统。它详细阐述了从理想到现实的完整落地路径,涵盖了从顶层设计、核心组件、基础设施到底层实现的全过程。第一部分:道 (Why & What) - 理论、本质与顶层设计这一部分回答了“我们要做什么”以及“这东西的本质是什么”。1. 问题的拆解:AI 应用的本质是什么?它与传统应用有何根本不同?构成 AI 应用的核心要素是什么?构建 AI 应用的两种主要路径是什么?

2025-07-28 12:26:56 750

原创 AI 及开发领域动态与资源汇总(2025年7月26日)

2025-07-26 09:02:19 695

原创 现代 LLM 架构比较

从以下几个方面为你进行拆解、总结和提炼,并提供我的思考和实践建议。

2025-07-26 08:49:25 448

原创 Kiro Spec工作流的启示

这套工作流是亚马逊为其 Kiro IDE 设计的一套软件工程最佳实践,旨在将模糊的开发想法(Vibe Coding)变得规范、可控。:一个优秀的思想、一个结构化的方法论,其价值远超任何特定工具。总而言之,这篇文章不仅介绍了一个工具,更是揭示了一种先进的、可移植的、与 AI 深度协同的软件开发哲学。,让它变成一个遵循严格软件工程规范的“项目经理”,然后再由这个“项目经理AI”去指导“程序员AI”完成具体编码任务。这个成果雄辩地证明了,顶级的工作流范式 + 强大的 AI 执行平台 = 极高的开发效率和质量。

2025-07-26 08:39:26 968

原创 深度解析多模态大模型在复杂商品理解中的协同优化实践

SFT 教会了模型如何解题,但在面临多个“看似都对”的选项时,模型依然会犹豫不决,稳定性不足。文章要解决的核心问题是:如何从淘宝家装商品的各种信息(SKU文本、SKU图片、详情图)中,文章清晰地展示了一个技术团队解决问题的完整心路历程,可以分为三个循序渐进的阶段。Prompt 工程终有上限,对于复杂的推理和选择任务,模型依然会“犯错”。为了追求更高的准确率和效率,团队转向了微调。两者结合,才最终打造出一个既懂招式、又会实战的“冠军模型”。这不仅仅是一个简单的信息提取任务,其本质是一个复杂的。

2025-07-25 19:20:46 870

原创 RDS Supabase

RDS Supabase 通过将开发友好的 BaaS 平台与企业级的云数据库能力深度融合,极大地降低了构建现代化、可扩展、AI 驱动的全栈应用的门槛和成本,让开发者能更专注于业务创新而非底层设施。下一步实践建议:亲自按照教程步骤,搭建一个属于自己的 Agentic RAG 应用。你可以尝试更换知识库文档,比如上传几篇你感兴趣的技术文章或你的个人简历,看看它的问答效果。思考这种 BaaS 模式的适用边界。它在什么场景下最有效(如 MVP、初创项目、内部工具)?

2025-07-25 19:01:35 420

原创 GPU网络基础,第1部分

核心知识点总结为何需要网络:并行计算的需求,单个 GPU 算力不足。如何组织网络:Leaf-Spine 拓扑是主流,它在可扩展性和延迟之间取得了平衡。如何扩大规模:同时采用 Scale-Up(节点内增强)和 Scale-Out(增加节点)。性能关键点:Intra-node 通信(如 NVLink)远快于 Inter-node 通信(如以太网),这是物理定律决定的。训练瓶颈:All-Reduce 等集合通信操作的延迟,是影响训练效率的关键。给你的下一步实践建议批判性思考。

2025-07-25 18:52:52 623

原创 理解使用Tailwind CSS的权衡之处

核心权衡总结你得到的 (Gains)你付出的 (Pains)开发速度(Velocity)可读性/维护性无需命名上下文丢失CSS 体积小HTML 体积大局部封装牺牲 CSS 继承/级联开箱即用的设计系统潜在的品牌冲突和生态锁定给你的实践建议 (Actionable Advice)这篇文章不是让你彻底放弃 Tailwind,而是要你明智地、有策略地使用它。项目评估小型项目、原型、个人项目:Tailwind 的速度优势非常明显,是绝佳选择。中型项目:可以采用混合模式 (Hybrid Mode)。

2025-07-25 18:38:33 522

原创 孤独的建造者与合群的信使

这篇文章以一个简单清晰的二分法为引,层层深入,最终揭示了我们宇宙一个深刻的内在结构性约束。它完美地体现了物理学的美感:从复杂的现象(物质多样性、各种力)追溯到简洁的规则(两种粒子),再从规则追溯到更深刻的、几乎是数学和逻辑层面的统一原理(自旋-统计定理),最后还探讨了这个原理的适用边界(维度)。这种思维方式,即现象 -> 分类 -> 关联 -> 原理 -> 边界,是进行批判性思考和探究事物本质的绝佳路径。

2025-07-25 18:31:26 713

原创 代码库索引机制学习

现象: AI 编程工具从单文件分析进化到了整个代码库(Codebase)级别的理解与交互。问题: 这种能力的跃升,其背后的核心技术——代码库索引 (Codebase Indexing)——究竟是如何实现的?本质: 这实际上是在问,如何让一个AI模型高效、安全、且能实时同步地“阅读”并“理解”一个完整的、不断变化的项目代码?作者将自己定位为“外行”,用朴素的方式,通过公开资料检索和动手实验,开启了这次学习之旅。这次探索之旅从一个模糊的好奇心开始,最终收获了对两种不同代码库索引方案的深度理解。

2025-07-25 12:37:56 753

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除