自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(58)
  • 收藏
  • 关注

原创 IntelllJ IDEA 打开别人项目没有自动配置导致运行按钮不能亮

在IntelliJ IDEA中运行按钮不可点击的常见原因包括:未识别构建工具、缺少运行配置、目录标记错误或依赖未加载。解决方案包括:检查并重新加载Maven/Gradle项目;手动创建运行配置;将源代码目录标记为SourcesRoot;检查JDK设置;安装必要插件或清除缓存。针对多模块或非标准结构的项目,需确保正确配置模块依赖。通过这些步骤通常可以恢复运行功能,若问题持续需检查项目类型和具体加载状态。

2025-06-21 20:42:38 390

原创 多头注意力机制中全连接函数

摘要:本文解析了Transformer多头注意力机制中的全连接层(nn.Linear)作用,指出其通过矩阵乘法加偏置实现线性变换。系统阐释了4个全连接层的分工:前3个分别处理Query、Key、Value,第4个负责多头输出的整合。重点说明输入输出维度d_model需保持一致的原因——确保注意力计算和残差连接的维度匹配。最后解释了clones函数的模块复制功能,强调这些全连接层是注意力机制的核心组件。

2025-06-21 18:07:48 397

原创 Dropout

本文介绍了神经网络中的Dropout正则化技术。Dropout通过在训练时随机丢弃部分神经元(概率p),防止模型过拟合和神经元共适应,提高泛化能力。测试时保留所有神经元但输出缩放(1-p)。PyTorch通过nn.Dropout实现,应用时需根据网络层类型选择合适p值(全连接层常用0.5,注意力机制0.1-0.2)。Dropout变体包括SpatialDropout、DropConnect等。该技术能有效提升模型性能,在Transformer等架构中广泛应用。

2025-06-21 17:56:25 468

原创 理解神经网络代码流程

数据来源数据怎么处理有没有分词怎么数据预处理模型模块是什么

2025-06-21 17:36:58 116

原创 为什么要BRE

BPE(字节对编码)是自然语言处理中广泛使用的子词分词算法。其主要优势包括:1)通过子词组合解决未登录词问题;2)平衡词汇表大小与效率,减少参数量;3)捕捉词的形态结构和构词规则;4)提升模型泛化能力;5)适配GPT等大型预训练模型。BPE在控制词汇量、处理新词和提升模型性能方面表现突出,成为现代NLP的核心技术。

2025-06-21 17:08:02 658

原创 en解码成json

该Python脚本用于处理JSON格式的语料库文件,将训练集(train)、验证集(dev)和测试集(test)中的中英文文本分别提取并保存到两个单独的文件中。程序首先读取三个JSON文件,将中文内容(item[1])和英文内容(item[0])分别存入列表,然后以UTF-8编码写入到corpus.ch和corpus.en文件中。最终输出显示成功处理了252,777条中英文平行语料,并提示"Get Corpus!"完成信息。脚本特别处理了编码问题,确保非UTF-8字符不会导致写入失败。

2025-06-21 17:07:14 232

原创 基于Attention机制的模型。这使得它摆脱了RNN模型顺序读取序列的缺点,可以实现高度的并行化的理解

摘要:该模型完全基于注意力机制,摒弃了传统RNN的顺序计算结构,从而实现了高效的并行化。Attention机制直接计算序列中所有位置的关联关系,克服了RNN无法并行处理、长程依赖等问题。具体表现为:训练时可并行计算所有词表示,推理时内部计算仍保持并行。这种特性使Transformer等基于Attention的模型在性能上远超RNN,成为NLP主流架构的核心优势。

2025-06-21 16:08:49 1150

原创 TypeError: forward() missing 3 required positional arguments: ‘tgt‘, ‘src_mask‘, and ‘tgt_mask‘

摘要:该代码通过h.build_graph()可视化神经网络模型的计算图,其中第一个参数是PyTorch模型实例,第二个参数是模拟输入数据的零张量。示例使用的torch.zeros([1,1,28,28])对应单通道28x28灰度图像输入,其中1表示batch size。输入形状需与模型匹配,如RGB图像应为[1,3,224,224]。该虚拟输入用于追踪前向传播过程以构建计算图。

2025-06-20 18:25:10 236

原创 报错解决graphviz.backend.ExecutableNotFound: failed to execute [‘dot‘, ‘-Tpdf‘, ‘-O‘, ‘.\\demo1.png‘], m

摘要:本文介绍了如何解决PyTorch可视化工具torchviz报错问题,需先安装Graphviz程序并配置环境变量。示例代码展示了一个包含两个卷积层和全连接层的CNN网络,并使用torchviz的make_dot函数生成网络结构图。关键步骤包括:安装Graphviz、添加系统路径、定义网络结构、生成随机输入数据,最后将网络可视化输出为png格式的文件。该流程适用于深度学习模型的架构可视化需求。

2025-06-20 17:04:05 259

原创 为什么要使用MTD,之后还要使用 DataLoader

摘要:MTDataset和DataLoader采用职责分离设计原则,分别负责数据预处理和批量加载。MTDataset实现数据按需加载和标准化预处理,避免内存溢出;DataLoader提供批量生成、数据打乱和多进程并行加载功能,提升训练效率。这种设计具有三大优势:内存效率(动态加载)、训练加速(多进程预加载)和灵活批处理(支持不同批次大小)。通过单一职责划分,该架构有效解决了大数据处理、训练效率、模型泛化和代码复用等问题,特别适合大型数据集场景,符合软件工程最佳实践。

2025-06-20 09:12:43 336

原创 liunx ls 命令

如果你真的只想列出隐藏文件(即以点开头的文件),你应该使用 `ls -a` 或更具体地 `ls .*`(但要注意,`.*` 也会匹配当前目录 `.` 和上级目录 `..`,所以你可能想要使用 `ls .[!但在这种情况下,由于我们使用的是简单的 `*.*`,通常不需要这样做(除非文件名本身以 `-` 开头,这可能会导致 `ls` 将其后的内容解释为选项)。- 如果有一个名为 `.hiddenfile` 的隐藏文件,它也会被列出,因为 `.hiddenfile` 符合 `*.*` 的模式(即包含一个点)。

2024-12-15 15:54:55 184

原创 liunx cp命令

`-a` 或 `--archive`:归档模式,递归地复制目录及其内容,并尽可能保留所有文件属性。- `-u` 或 `--update`:只在源文件比目标文件新或者目标文件不存在时才进行复制。- `-s` 或 `--symbolic-link`:对源文件创建符号链接而不是复制文件。- `-f` 或 `--force`:强制复制文件或目录,即使目标已经存在也不会提示。- `-r` 或 `--recursive`:递归复制整个目录树。- `-l` 或 `--link`:创建硬链接而不是复制文件。

2024-12-15 15:54:38 458

原创 liunx chomd命令

chmod` 命令是 Linux 和类 Unix 操作系统中用于改变文件或目录权限的命令。通过 `chmod`,你可以控制谁可以读取、写入或执行某个文件或目录。

2024-12-15 15:47:15 446

原创 cv2.WINDOW_NORMAL不起作用

cv2.namedWindow('show_img',cv2.WINDOW_NORMAL)得在展示图片前面。

2024-11-24 15:02:12 174

原创 测试摄像头是连接到计算机的第几个接口

要测试摄像头是连接到计算机的第几个接口,你可以使用OpenCV来循环尝试打开不同的摄像头索引,并检查是否成功打开。

2024-11-21 16:26:05 141

原创 在使用OpenC显示过大的图片时,导致屏幕无法显示全的问题

使用`cv2.namedWindow()`函数的`cv2.WINDOW_AUTOSIZE`标志来创建窗口,并设置`cv2.imshow()`函数的第二个参数为`cv2.WINDOW_AUTOSIZE`。在调用`cv2.imshow()`之前,使用`cv2.namedWindow()`创建一个可以手动调整大小的窗口。这样,当图像大小大于窗口大小时,可以手动调整窗口大小以显示完整的图像。可以根据显示窗口的大小,将图像缩小到与窗口大小相同或稍大的尺寸。通过调整图像的尺寸,可以避免图像过大导致的显示问题。

2024-11-21 15:52:35 664

原创 ER图绘制

(2)画实体之间的关系(重点)3、确定主键和外键(5分)2、确定表结构(5分)

2024-11-19 09:15:40 352

原创 什么是数据库

数据库(Database)是按照一定的数据模型组织、存储和管理数据的集合。它是用来高效地存储、检索、更新和管理数据的工具。数据库通常被用于信息系统中,以支持数据的持久化和高效访问。1. 数据的结构化:数据库中的数据是按照一定的结构或规则来组织的,例如表格形式。3. 高效性:数据库系统提供高效的数据操作方法,如查询、插入、更新和删除。2. 持久性:数据库中的数据可以长期存储,不会因程序关闭而丢失。简单来说,数据库是现代信息系统中核心的数据存储和管理工具。4. 并发性:支持多个用户同时访问和操作数据。

2024-11-19 08:54:24 206

原创 python NumPy

np` 是NumPy库的常用缩写,它是Python中用于科学计算的一个库,提供了大量的数学函数和操作。

2024-11-11 09:58:59 160

原创 二值化图像反转

在这个示例中,我们首先读取一张输入图像并将其转换为灰度图。然后,我们使用`cv2.threshold`函数对图像进行二值化处理。接着,我们使用`cv2.bitwise_not`函数对二值化图像进行反转。最后,我们使用`cv2.imshow`函数显示原图、二值化图像和反转后的图像。二值化图像反转是一种图像处理技术,主要用于将二值化图像的像素值从0和1进行反转。在二值化图像中,像素值通常只有两个可能的值:0(黑色)和1(白色)。# 显示原图、二值化图像和反转后的图像。# 应用阈值处理,将图像二值化。

2024-10-23 19:15:13 552

原创 list index out of range

该报错是指你的列表索引值超过了列表的长度,检查一下你的常用读取序列的索引值。一直出现这个报错不知道什么情况。

2024-10-23 18:50:33 194

原创 网址工具(完善中)

收录关键的网址

2024-10-23 15:00:54 195

原创 python-opencv代码命令

【代码】python-opencv代码命令。

2024-10-23 14:59:19 427

原创 迷宫生成器

https://toolwa.com/maze/

2024-10-23 14:57:34 479

原创 什么是差动变压器的零点残余电压?产生的主要原因是什么?有哪些方法可以减少零点残余电压的影响?

(3)采用合适的补偿电路减少零点残余电压。一般可采用在变压器的二次侧串并联适当数值的电阻电容元件,适当调节这些元件,可以补偿零点残余电压。产生主要原因:零点残余电压主要是由传感器的两次级绕组的电气参数与几何尺寸不对称,以及磁性材料的非线性(铁磁饱和、磁滞损耗)等问题引起的。残余电压:当衔铁位于中心位置时, 差动变压器输出电压并不等于零, 我们把差动变压器在零位移时的输出电压称为零点残余电压。(1)尽可能保证传感器的两次级绕组的电气参数与几何尺寸不对称磁性材料经过处理,消除内部残余应力,使其内部均匀稳定。

2024-10-22 11:33:57 3081

原创 用直流电压激励会损坏差动变压器传感器,为什么

因为变压器初级直接接到了直流电压上,由于初级线圈的直流电阻很低,这样形成很大的直流电流,产生的热量如果足够大可能将初级线圈烧毁。

2024-10-22 11:30:55 788

原创 ifftshift函数

具体来说,`ifftshift` 的作用是将输入数组的零频率分量(即直流分量)移到数组的中心位置,而其他频率分量则相应地移动到数组的边缘。这在处理傅里叶变换结果时非常有用,因为 `fftshift` 会将零频率分量移到数组的角落,而 `ifftshift` 则将其移回到中心。在这个例子中,`ifftshift` 被用来将重建的数据移回其原始位置,以便与原始矩阵 `A` 进行比较。其中 `X` 是一个输入数组,`Y` 是经过 `ifftshift` 操作后的输出数组。% 对移位后的频域数据进行逆傅里叶变换。

2024-10-22 10:53:31 614

原创 MATLAB中的size函数

1. **基本用法**:当仅有一个输出参数时,`s=size(A)`会返回一个行向量,其中第一个元素是矩阵的行数,第二个元素是矩阵的列数Θic-1ΘΘic-2ΘΘic-3Θ。例如,对于二维矩阵`A`,`size(A)`返回的是`[m, n]`,表示`A`是一个`m`行`n`列的矩阵。4. **结合其他函数使用**:MATLAB中还有其他函数如`length`、`ndims`和`numel`等与`size`函数配合使用,以获取数组的最大维度长度、数组的总维度数和元素的总数等详细信息。

2024-10-22 10:51:53 1750

原创 matlab imread函数

imread函数的基本用法A=imread(filename),其中filename是要读取的文件名。该函数能够自动推断出文件的格式,并据此读取图像。除了基本用法外,imread还支持多种调用格式,如`[X, map] = imread(...)`用于读取索引图像及其关联的颜色映射表,以及从Internet URL直接读取图像等。%将所有小于或等于low的值都显示为黑色,所有大于或等于high的值都显示为白色。MATLAB中的imread函数主要用于从图形文件中读取图像,并返回包含图像数据的一个数组。

2024-10-22 10:45:51 1101

原创 在MATLAB中,`double`函数

`double`函数的使用非常直接,基本语法是 `B = double(A)`,其中 `A` 是要转换的原始数据(可以是整数、字符、逻辑等类型),`B` 是转换后的双精度浮点数Θic-1ΘΘic-5Θ。- **兼容性与互操作性**:在与其他编程语言或工具进行数据交换时,双精度浮点数因其广泛的支持而成为一种标准的数据格式,确保数据在不同平台间的正确解析和使用。在MATLAB中,`double`函数的主要作用是将其他数据类型转换为**双精度浮点数类型**。2. **应用场景和重要性**

2024-10-22 10:43:09 1974

原创 MATLAB中的fftshift函数

通过fftshift函数,可以重新排列FFT、fft2或fftn的输出结果,使得零频点位于频谱的中心Θic-2ΘΘic-3Θ。由于实信号的频谱是关于fs/2对称的,因此在使用FFT进行频谱分析时,需要通过fftshift函数将零频分量移动到中心位置,以便更好地观察和分析频谱特性Θic-1Θ。然而,在某些特定情况下(如计算多普勒频率等),可能需要对复信号的FFT结果进行fftshift操作以确保与正确的频率单元相对应Θic-4ΘΘic-5Θ。通过合理使用该函数,可以更准确地获取信号的频率信息并进行相关处理。

2024-10-22 10:40:29 1142

原创 MATLAB imnoise函数

8. **注意事项**:在使用imnoise函数时,需要注意参数的合理设置,特别是当处理uint8类图像时,应确保输入的均值和方差参数在[0,1]范围内,避免因参数不当导致图像质量过度恶化或失真Θic-2ΘΘic-3Θ。6. **泊松噪声**:通过调用g = imnoise(I, 'poisson'),可以根据图像数据的亮度值添加泊松噪声,适用于模拟光子计数或量子化过程产生的噪声Θic-1Θ。**MATLAB imnoise函数用于向图像添加不同类型的噪声,以模拟真实世界中的噪声污染情况**。

2024-10-22 10:36:03 890

原创 (智能家居)

2.每一个产品都是亿万级的市场,不愿意被吞并。

2024-10-22 09:58:55 115

原创 什么是图像增强

有目的地强调图像的整体或局部特性,将原来不清晰的图像变得清晰或强调某些感兴趣的特征,扩大图像中不同物体特征之间的差别,抑制不感兴趣的特征,使之改善图像质量、丰富信息量,加强图像判读和识别效果,满足某些特殊分析的需要。增强图像中的有用信息,它可以是一个失真的过程,其目的是要改善图像的视觉效果,针对给定图像的应用场合。

2024-10-22 09:47:21 144

原创 对图像进行傅立叶变换的目的是什么

1. 分析图像的频率成分:通过傅立叶变换,可以将图像从空间域转换到频率域,得到图像的频谱图。低频通常对应于图像中的平滑区域,而高频则对应于图像中的边缘和细节部分。通过低通滤波器可以去除图像中的高频噪声,而通过高通滤波器则可以增强图像的边缘信息。2. 提取图像特征:傅立叶变换可以用于提取图像的形状、纹理等特征。通过保留图像傅立叶系数中的低频部分并丢弃高频部分,可以实现对图像的有效压缩。综上所述,对图像进行傅立叶变换的主要目的是分析图像的频率成分、提取图像特征、实现图像增强与去噪、图像压缩以及利用卷积定理等。

2024-10-22 09:45:44 654

原创 安装我的世界plc2

不一样的版本需要不同的Java版本,根据自己所下的世界来确定版本。点击启动游戏的时候会出现对于版本java的需求提示。选择刚刚下载对应我的世界版本的文件夹位置。

2024-10-20 13:57:44 1422

原创 PyCharm怎么添加解释器(怎么用已经具有torch环境)

背景:在实际配置pytorch环境的过程中配置的太过繁琐或者在配置完之后,出现在后续操作过程中破坏原有的配置环境的情况。所以我们迫切的需要一种工具或者思路来解决这个问题。方法:1.用脚本自行配置 2.对原有的配套的环境进行保存,下次再使用。

2024-10-20 11:28:41 666

原创 可视化安装版本列表出错:未能找到路径“C:\ProgramData\PCL\libwebp.dl”的一部分。

在PCL.MyBitmap..ctor(String FilePathOrResourceName)在PCL.MyListltem.CustomizeAnnotation(String value)在PCL.ModDownloadLib.McDownloadListltem(J0bject Entry, ClickEventHandler OnClick, BooleanIsSaveOnly)如果不反馈,这个问题可能永远无法得到解决!检查安装路径是不是全英文。

2024-10-19 21:12:05 195

原创 win怎么一次性选中大量图片

在Windows系统中,如果要选择一段连续的图片,可以按住Shift键,选择要选择的第一张和最后一张图片,所有位于这两张图片之间的图片都将被选中。如果要选择不连续的多张图片,可以按住Ctrl键,选择需要的多张图片即可。这种方式可以在文件夹中同时选择不同类型的文件。

2024-10-18 11:02:48 3217

原创 obsdian同步教程

obsdian第三方插件 + 坚果云

2024-10-15 15:24:16 1445

深度学习实验报告.doc

以下是为“深度学习实验报告.doc”生成的资源描述,采用推荐格式并突出价值点: --- **内容概要** 本实验报告详细记录了基于Transformer架构的神经机器翻译系统开发全流程,涵盖中文到英文的翻译任务实现。包含完整的技术方案设计、PyTorch代码实现、超参数调优过程、训练可视化分析及BLEU评估结果,特别包含Transformer核心模块(多头注意力/位置编码)的代码级解析。 **适用人群** 1. 高校人工智能/计算机专业学生(课程设计/实验报告参考) 2. NLP入门学习者(Transformer实战案例) 3. 需要快速构建机器翻译系统的开发者 使用场景及目 课程作业:直接引用报告框架完成深度学习课程实验 毕业设计:提供完整可运行的PyTorch代码(含数据预处理/训练/评估) 技术预研**:Transformer模型在翻译任务中的性能验证基准 - 面试准备**:深入理解Attention机制及工业级实现细节

2025-05-31

实习开发流程.zip有一整套

实践开发视频

2025-05-31

ChromeSetup.exe

谷歌浏览器安装包

2024-11-10

NutstoreWindowsWPFInstaller.exe

坚果云安装包

2024-11-10

Obsidian-1.6.7.apk

Obsidian安装APP软件

2024-11-10

pycharm-community-2024.2.3.exe

pycrarm安装包

2024-11-10

WeChatSetup.exe

微信安装包

2024-11-10

电子技术基础(数字部分)第一章 数字逻辑概论PPT

电子技术基础(数字部分)第一章 数字逻辑概论PPT

2024-10-22

基于MATLAB的二维图形绘制与数据可视化技术

内容概要:本文详细介绍了MATLAB环境中二维图形的绘制方法,包括基本绘图、多条曲线绘制、图形属性设置、文本标注、坐标轴调整、以及多种特殊图形如直方图、茎叶图、阶梯图、极坐标图等的绘制方法。并通过具体的例子展示了如何使用不同的线型、颜色来增强图像的表现力,同时提供了一些实际应用案例,如班级考试成绩分布的饼图展示和RGB图像处理。本文还包括了一个简单的实验总结,涉及用不同线型和颜色绘制特定数学函数及其包络线。 适合人群:适用于初学者及中级用户,特别是需要在科研或工程中进行数据分析和可视化工作的读者。 使用场景及目标:帮助读者快速掌握MATLAB的绘图工具箱,学会在科学研究、工程项目中创建专业级别的图表;提升对实验数据的理解能力;熟悉不同类型的数据表现方式及其应用场景。 其他说明:实验内容丰富实用,涵盖广泛的基础知识点,不仅限于理论教学,还鼓励读者动手实践,在练习过程中巩固所学技能。对于想要深入了解MATLAB高级特性的读者来说也是一个良好的起点。

2024-10-17

MATLAB程序设计实验:掌握M文件与流程控制

内容概要:本文档详细介绍了MATLAB程序设计基础和M文件的具体应用,涵盖了实验的目的、内容以及步骤指导。首先介绍并演示了脚本文件与函数文件的区别及其基本操作方法,如编写一个求解自然数列之和的功能实例;接着重点阐述了几种常用的程序流程控制语句——for循环、while循环和switch-case结构,并提供了相应的实战案例进行巩固。 适合人群:对MATLAB初学者或者希望深入理解和提高编程技能的研究人员。 使用场景及目标:帮助读者快速入门MATLAB编程环境,了解并熟练掌握基本的数据处理技巧,特别是针对科学计算领域的特定任务,例如数列运算、数学常数估算、条件判断等。 阅读建议:实际动手操作是最佳的学习方式,因此建议边看文档边跟随步骤进行实践。同时也可以尝试自行修改或扩展已有案例,探索更多可能性。此外,可以结合在线资源和官方文档进一步深化理解。

2024-10-17

MATLAB环境下的多项式与插值拟合数值运算实验指导

内容概要:本实验主要介绍了MATLAB中关于多项式的各种基本运算方法,包括表示、加减乘除、求根与求值等;还讲述了在一维函数插值方面的应用以及基于已知数据进行的多项式拟合操作,同时涉及了简单的符号运算概念。通过具体实例演示了如何使用内置函数完成复杂的数学任务,并探讨了数值计算在工程实际问题解决中的应用。 适合人群:正在学习或希望提高自己在Matlab方面技能的学生和技术工作者。 使用场景及目标:①理解并熟练运用多项式的定义及其相关运算技巧;②学会选择合适的一维插值方法解决特定应用场景下的连续变量估值问题;③掌握根据不同需求进行不同程度多项式拟合的方法。 其他说明:本次实验侧重于理论讲解配合简单示例验证,旨在让学员对MATLAB强大的矩阵和数组运算能力有初步的认识,为进一步深入研究打下坚实的基础。

2024-10-17

MATLAB基础实验之向量、数组和字符串运算是如何掌握并应用于实践

内容概要:本文档详细介绍了如何通过一系列具体实验来掌握MATLAB中的向量、数组和矩阵的生成与运算以及常见字符串操作的基本技巧,实验内容从简单的向量运算开始,逐步深入到复杂的数据结构如矩阵的高级操作和实际应用。同时文档还包括了实验的具体步骤及样例代码解析,旨在通过动手练习提高用户的理解和操作能力。 适用人群:主要面向正在学习MATLAB编程或者对科学计算有兴趣的学生和技术人员。 使用场景及目标:通过完成本次实验可以巩固对于MATLAB基本概念的理解,并学会如何利用MATLAB来进行有效的数据分析和数据处理,尤其适用于数学、物理等自然科学领域的科研辅助工具的学习。 其他说明:建议实验前先熟悉MATLAB界面环境和基础命令,边学边练才能事半功倍;文档提供的示例不仅可用于理论验证,也可作为后续项目开发的良好起点。

2024-10-17

计算机科学实验教程:MATLAB入门与环境熟悉

内容概要:本文档为学生提供了一套详细的MATLAB入门指南,旨在让初学者掌握MATLAB的基本工作环境,熟悉各种常用窗口及其主要功能。文档首先列举了实验室内必须遵守的规定,并明确指出了本次实验的目标是为了让学生初步接触MATLAB。接下来介绍了MATLAB中的五个主要工作界面以及常见的专业领域内工具箱。接着,提供了具体的上机练习任务,涵盖了简单变量定义、矩阵操作、函数绘制、工作区管理等技能训练。最后强调了如何有效利用帮助资源解决问题的方法。通过这次实验,学生们能够更好地理解和运用MATLAB软件。 适合人群:对数据分析感兴趣的大学新生或者初学者。 使用场景及目标:作为一门必修课的辅助资料,本教材主要适用于高等院校信息工程系的大一新生,在第一学期的基础课程中使用。 其他说明:除了完成指定的操作以外,还需要撰写实验报告,并由指导教师审核评分。文中特别提示,在书写实验报告的时候应注意排版规范和结果准确性。

2024-10-17

机器学习决策树学习PPT

如果有侵权行为,联系作业删除

2024-06-11

第一章机器学习概述PPT

如有侵权行为,联系作者删除

2024-06-11

paesec远程控制软件

是一家专注为视觉行业提供IaaS、PaaS及SaaS云服务,致力满足图形图像行业用户的专业需求,助力行业构建成熟生态的公司,用户遍及50多个国家和地区,包括奥斯卡金像奖得主、知名的影视动画、视效、建筑可视化、游戏工作室,作为亚洲前沿的云渲染平台,致力于提供专业可靠、安全稳定、可持续创新的云渲染解决方案,助力推动行业快速发展。 多年来深耕核心技术和专业服务,在音视频编解码及实时推流技术等专项技术上取得重大突破!

2024-05-09

极限存在准则与两个重要极限

第一个极限存在准则是柯西﹣斯维亚切斯极限存在准则(Cauchy- Schwarz Limit Existence Criteria)。↑1 如果对于任意的 &>0,存在一个 8>0,使得当0<,x-a 8时,总 ↑ 有,f(x)-f(a),<e,则函数 f(x)在点 a 处存在极限 A 第二个极限存在准则是海涅定理(Heine's Theorem),也被称为局部有界性定理(Local Boundedness Theorem)。其表述为:如果对于 个函数 f(x),在点 a 的一些邻域内 f(x)有界,即存在一个常数 M>0,使得对于所有的xE(a-8,a+8)有,f(x),≤M,则函数 f(x)在点 a 处存在极限。

2024-04-25

数据挖掘与分析实验课内容

实验目的 (1)掌握Python的基本语法; (2)掌握numpy数学计算模块的使用; (3)掌握if条件语句、for循环语句、基本数据结构的编程方法。 实验内容及原理 实验项目1、提示用户输入数组行数和列数,生成一个元素范围0-10(包含10)的二维数组,分别使用三种方法将该数组降维为一维数组后输出。 图1 输出结果页面(***须替换为所使用的降维方法名) 实验项目2、记录一个学生语数英三个科目的五次成绩,其成绩分别为(84, 75, 45, 90, 67)、(85, 60, 75, 50, 95)、(70, 54, 85, 20, 47)。求不及格次数最多的科目和平均分最高的科目输出。(可预先定义科目列表:list1 = ['Chinese', 'Math', 'English'],求得索引后取出科目) 图2 结果输出页面 实验仪器与工具 电脑、PyCharm软件、Python软件。 实验相关预习内容 PPT或书本第1-4章。主要熟悉列表、字典、数组知识点;掌握if条件语句语句,循环语句的使用,熟悉常见函数的使用,numpy中常见的随机数生成函数。 实验步骤及要求 (1)在电

2024-04-24

【自然语言处理】BPE算法原理与应用:基于SentencePiece的中英文分词及词表优化策略

内容概要:本文主要介绍了字节对编码(BPE)的核心思想及其算法原理,以及BPE在自然语言处理中的应用。BPE通过迭代地合并训练语料中最频繁共现的字节对,逐步构建一个包含常见子词单元的词表,从而实现表示任意单词、控制词表大小和平衡水字符号粒度的目标。文中详细讲解了BPE的初始化、迭代合并、终止条件和最终词表构建过程,并介绍了使用sentencepiece工具包实现BPE分词的具体方法。此外,还探讨了中英文词表大小的选择,并描述了基于torch.utils.data.Dataset的数据预处理流程。最后,文章介绍了日志记录器的作用、代码解析、示例及最佳实践建议,帮助开发者更好地理解和应用日志记录功能。; 适合人群:对自然语言处理、机器学习和深度学习感兴趣的开发者,尤其是有一定编程基础和技术背景的研究人员和工程师。; 使用场景及目标:①理解BPE算法原理及其在文本处理中的应用;②掌握使用sentencepiece工具包实现BPE分词的方法;③学习如何合理配置日志系统,提高系统的可维护性和故障排查效率。; 其他说明:本文不仅提供了理论知识,还结合实际代码示例,帮助读者更好地理解和应用相关技术。建议读者在学习过程中结合代码实践,以加深理解。

2025-06-27

教育领域考试流程详细步骤解析:从打印准考证到完成各科考试的操作指南

内容概要:本文档主要介绍了考试流程的详细步骤。首先需要打印准考证并核查考试的具体信息如时间、科目与地点,考生应提前20分钟到达考场。进入考场后,监考老师将核对考生信息并由考生签字确认,随后考生需找到自己的座位并检查电脑设备(键盘鼠标)是否正常,有问题及时向老师反馈。考试正式开始时,输入准考证号并留意考试界面上的时间提示。选择题部分完成后不可再返回修改。最后是关于PPT、WORD和EXCEL的操作部分考核。; 适合人群:即将参加相关计算机技能考试的考生。; 使用场景及目标:帮助考生熟悉从考前准备到实际操作的完整考试流程,确保顺利参加考试并提高考试成绩。; 阅读建议:考生应仔细阅读每个步骤,特别注意提前到场时间、设备检查以及选择题的作答规则,按照流程做好充分准备。

2025-06-27

计算机二级考试Word操作要点:字体、段落、样式、表格等核心考点解析

内容概要:本文档主要围绕计算机二级考试中的Word操作考点展开详细讲解。内容涵盖字体、段落、项目符号、中文版式、段落排序、段落底纹和边框、制表位、样式、替换操作、选择与选择性粘贴、封面设计、图形操作、表格、图表、超链接、文本框、页眉页脚、页面设置、分栏、页面背景、分隔符、目录、脚注尾注、多级列表、题注以及书目和索引等多个方面。每个部分不仅介绍了基本的操作方法,还列举了具体的考试题型及要求,帮助考生熟悉考试内容和操作技巧。 适合人群:准备参加计算机二级考试的学生,尤其是需要提高Word操作技能的考生。 使用场景及目标:①帮助考生掌握Word文档的各种操作技巧,如字体设置、段落格式调整、项目符号和编号的使用等;②针对考试题型进行练习,如字体和段落格式的设置、表格和图表的制作、超链接的插入等;③提升考生的实际操作能力,确保能够熟练应对考试中的各种要求。 阅读建议:本文档内容详尽且实用,建议考生按照章节顺序逐步学习,重点理解和练习各章节的操作要点,同时结合实际考试题型进行模拟练习,以达到最佳的学习效果。此外,对于复杂的操作,如表格、图表、目录等,建议反复练习,确保掌握。

2025-06-27

dbeaver-ce-24.3.1-win32.win32.x86-64.zip

小海狸

2025-06-24

Linux实验课3-用户及组用户管理.pptx

Linux实验课3-用户及组用户管理.pptx

2025-06-24

计算机二级Office题库.zip

计算机二级题库

2025-06-24

《智能设备开发实践》课程论文模板.doc

IMIT(智能多媒体交互终端) —— 基于6818 开发板的多功能智能设备设计与实现

2025-06-15

06线程+摄像头使用.zip

06线程+摄像头使用.zip

2025-05-31

04触摸屏的使用.zip

04触摸屏的使用.zip

2025-05-31

opencv追踪代码.zip

opencv追踪代码.zip

2025-05-31

SecureCRT-Portable.zip

SecureCRT_Portable.zip

2025-06-02

【数据库设计】B站用户与视频互动关系数据库设计:涵盖用户、视频、点赞、评论、关注、私信及投币功能的详细实现

内容概要:本文档详细描述了一个名为“bili”的数据库的设计与实现,涵盖了用户、视频、点赞、评论、关注、私信和投币等多个相关表的创建、约束设置、索引添加及触发器定义。数据库设计考虑了数据完整性、性能优化以及业务逻辑的实现。例如,通过外键约束确保用户与视频之间的关联关系,使用触发器实现投币操作时的硬币余额检查和更新,创建视图方便查询用户的活动情况和热门视频排行。此外,文档还包含了示例数据插入语句,展示了实际应用场景下的数据操作。 适合人群:数据库管理员、后端开发工程师、数据分析人员以及对数据库设计和SQL语言感兴趣的初学者。 使用场景及目标:① 学习和理解关系型数据库的设计原则和最佳实践;② 掌握SQL语句的编写技巧,包括表的创建、数据插入、更新、删除及复杂查询;③ 理解并应用外键、索引、触发器等数据库特性来保证数据的一致性和提高查询效率;④ 利用视图简化复杂查询,提升数据管理和分析能力。 阅读建议:建议读者先熟悉SQL基础知识,再逐步深入理解各个表之间的关系及其背后的业务逻辑。对于复杂的操作如触发器和视图,可以通过实验加深理解。同时,可以尝试自己动手构建类似的数据库结构,以巩固所学内容。

2025-05-31

一个计算机视觉的测量软件.zip

一个计算机视觉的测量软件.zip

2025-05-31

【数字图像处理】基于填空与选择题的数字图像基础知识点汇总:涵盖图像表示、噪声处理、边缘检测及压缩编码

内容概要:本文档为一份关于数字图像处理的作业,涵盖填空题、选择题、判断题、简答题和综合设计题五个部分。内容涉及数字图像的基本概念,如像素、图像类型、噪声、滤波器、边缘检测算子等;图像处理的各种方法,包括直方图均衡化、形态学运算、图像压缩、傅里叶变换等;以及具体的算法实现,如Huffman编码、Laplacian算子锐化、中值滤波等。文档不仅考察理论知识,还要求学生动手实践,通过具体题目加深对数字图像处理的理解。 适合人群:具备一定数学和编程基础,对数字图像处理感兴趣的本科生、研究生及科研人员。 使用场景及目标:①帮助学生巩固课堂所学知识,提高解决实际问题的能力;②作为课程作业或考试复习资料,评估学生对数字图像处理基本概念和技术的掌握情况;③为从事图像处理领域的工程师提供参考,帮助他们理解和应用相关技术。 其他说明:文档内容全面,难度适中,既包含了基础知识的考查,又涉及了一些较为复杂的算法实现。建议读者在学习过程中结合相关教材和文献,深入理解每个知识点,并通过编程实践进一步巩固所学内容。此外,文档中的题目覆盖面广,有助于培养学生的综合能力,包括理论分析、算法设计和编程实现等多方面技能。

2025-05-31

03映射颜色和图片(封装函数).zip

03映射颜色和图片(封装函数).zip

2025-05-31

USB转串口万能驱动.zip

一些嵌入式驱动

2025-05-31

02写颜色.zip如果有侵权,则下架

02写颜色.zip

2025-05-31

05文件封装+相册思路.zip

05文件封装+相册思路.zip

2025-05-31

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除