- 博客(58)
- 收藏
- 关注
原创 IntelllJ IDEA 打开别人项目没有自动配置导致运行按钮不能亮
在IntelliJ IDEA中运行按钮不可点击的常见原因包括:未识别构建工具、缺少运行配置、目录标记错误或依赖未加载。解决方案包括:检查并重新加载Maven/Gradle项目;手动创建运行配置;将源代码目录标记为SourcesRoot;检查JDK设置;安装必要插件或清除缓存。针对多模块或非标准结构的项目,需确保正确配置模块依赖。通过这些步骤通常可以恢复运行功能,若问题持续需检查项目类型和具体加载状态。
2025-06-21 20:42:38
390
原创 多头注意力机制中全连接函数
摘要:本文解析了Transformer多头注意力机制中的全连接层(nn.Linear)作用,指出其通过矩阵乘法加偏置实现线性变换。系统阐释了4个全连接层的分工:前3个分别处理Query、Key、Value,第4个负责多头输出的整合。重点说明输入输出维度d_model需保持一致的原因——确保注意力计算和残差连接的维度匹配。最后解释了clones函数的模块复制功能,强调这些全连接层是注意力机制的核心组件。
2025-06-21 18:07:48
397
原创 Dropout
本文介绍了神经网络中的Dropout正则化技术。Dropout通过在训练时随机丢弃部分神经元(概率p),防止模型过拟合和神经元共适应,提高泛化能力。测试时保留所有神经元但输出缩放(1-p)。PyTorch通过nn.Dropout实现,应用时需根据网络层类型选择合适p值(全连接层常用0.5,注意力机制0.1-0.2)。Dropout变体包括SpatialDropout、DropConnect等。该技术能有效提升模型性能,在Transformer等架构中广泛应用。
2025-06-21 17:56:25
468
原创 为什么要BRE
BPE(字节对编码)是自然语言处理中广泛使用的子词分词算法。其主要优势包括:1)通过子词组合解决未登录词问题;2)平衡词汇表大小与效率,减少参数量;3)捕捉词的形态结构和构词规则;4)提升模型泛化能力;5)适配GPT等大型预训练模型。BPE在控制词汇量、处理新词和提升模型性能方面表现突出,成为现代NLP的核心技术。
2025-06-21 17:08:02
658
原创 en解码成json
该Python脚本用于处理JSON格式的语料库文件,将训练集(train)、验证集(dev)和测试集(test)中的中英文文本分别提取并保存到两个单独的文件中。程序首先读取三个JSON文件,将中文内容(item[1])和英文内容(item[0])分别存入列表,然后以UTF-8编码写入到corpus.ch和corpus.en文件中。最终输出显示成功处理了252,777条中英文平行语料,并提示"Get Corpus!"完成信息。脚本特别处理了编码问题,确保非UTF-8字符不会导致写入失败。
2025-06-21 17:07:14
232
原创 基于Attention机制的模型。这使得它摆脱了RNN模型顺序读取序列的缺点,可以实现高度的并行化的理解
摘要:该模型完全基于注意力机制,摒弃了传统RNN的顺序计算结构,从而实现了高效的并行化。Attention机制直接计算序列中所有位置的关联关系,克服了RNN无法并行处理、长程依赖等问题。具体表现为:训练时可并行计算所有词表示,推理时内部计算仍保持并行。这种特性使Transformer等基于Attention的模型在性能上远超RNN,成为NLP主流架构的核心优势。
2025-06-21 16:08:49
1150
原创 TypeError: forward() missing 3 required positional arguments: ‘tgt‘, ‘src_mask‘, and ‘tgt_mask‘
摘要:该代码通过h.build_graph()可视化神经网络模型的计算图,其中第一个参数是PyTorch模型实例,第二个参数是模拟输入数据的零张量。示例使用的torch.zeros([1,1,28,28])对应单通道28x28灰度图像输入,其中1表示batch size。输入形状需与模型匹配,如RGB图像应为[1,3,224,224]。该虚拟输入用于追踪前向传播过程以构建计算图。
2025-06-20 18:25:10
236
原创 报错解决graphviz.backend.ExecutableNotFound: failed to execute [‘dot‘, ‘-Tpdf‘, ‘-O‘, ‘.\\demo1.png‘], m
摘要:本文介绍了如何解决PyTorch可视化工具torchviz报错问题,需先安装Graphviz程序并配置环境变量。示例代码展示了一个包含两个卷积层和全连接层的CNN网络,并使用torchviz的make_dot函数生成网络结构图。关键步骤包括:安装Graphviz、添加系统路径、定义网络结构、生成随机输入数据,最后将网络可视化输出为png格式的文件。该流程适用于深度学习模型的架构可视化需求。
2025-06-20 17:04:05
259
原创 为什么要使用MTD,之后还要使用 DataLoader
摘要:MTDataset和DataLoader采用职责分离设计原则,分别负责数据预处理和批量加载。MTDataset实现数据按需加载和标准化预处理,避免内存溢出;DataLoader提供批量生成、数据打乱和多进程并行加载功能,提升训练效率。这种设计具有三大优势:内存效率(动态加载)、训练加速(多进程预加载)和灵活批处理(支持不同批次大小)。通过单一职责划分,该架构有效解决了大数据处理、训练效率、模型泛化和代码复用等问题,特别适合大型数据集场景,符合软件工程最佳实践。
2025-06-20 09:12:43
336
原创 liunx ls 命令
如果你真的只想列出隐藏文件(即以点开头的文件),你应该使用 `ls -a` 或更具体地 `ls .*`(但要注意,`.*` 也会匹配当前目录 `.` 和上级目录 `..`,所以你可能想要使用 `ls .[!但在这种情况下,由于我们使用的是简单的 `*.*`,通常不需要这样做(除非文件名本身以 `-` 开头,这可能会导致 `ls` 将其后的内容解释为选项)。- 如果有一个名为 `.hiddenfile` 的隐藏文件,它也会被列出,因为 `.hiddenfile` 符合 `*.*` 的模式(即包含一个点)。
2024-12-15 15:54:55
184
原创 liunx cp命令
`-a` 或 `--archive`:归档模式,递归地复制目录及其内容,并尽可能保留所有文件属性。- `-u` 或 `--update`:只在源文件比目标文件新或者目标文件不存在时才进行复制。- `-s` 或 `--symbolic-link`:对源文件创建符号链接而不是复制文件。- `-f` 或 `--force`:强制复制文件或目录,即使目标已经存在也不会提示。- `-r` 或 `--recursive`:递归复制整个目录树。- `-l` 或 `--link`:创建硬链接而不是复制文件。
2024-12-15 15:54:38
458
原创 liunx chomd命令
chmod` 命令是 Linux 和类 Unix 操作系统中用于改变文件或目录权限的命令。通过 `chmod`,你可以控制谁可以读取、写入或执行某个文件或目录。
2024-12-15 15:47:15
446
原创 cv2.WINDOW_NORMAL不起作用
cv2.namedWindow('show_img',cv2.WINDOW_NORMAL)得在展示图片前面。
2024-11-24 15:02:12
174
原创 测试摄像头是连接到计算机的第几个接口
要测试摄像头是连接到计算机的第几个接口,你可以使用OpenCV来循环尝试打开不同的摄像头索引,并检查是否成功打开。
2024-11-21 16:26:05
141
原创 在使用OpenC显示过大的图片时,导致屏幕无法显示全的问题
使用`cv2.namedWindow()`函数的`cv2.WINDOW_AUTOSIZE`标志来创建窗口,并设置`cv2.imshow()`函数的第二个参数为`cv2.WINDOW_AUTOSIZE`。在调用`cv2.imshow()`之前,使用`cv2.namedWindow()`创建一个可以手动调整大小的窗口。这样,当图像大小大于窗口大小时,可以手动调整窗口大小以显示完整的图像。可以根据显示窗口的大小,将图像缩小到与窗口大小相同或稍大的尺寸。通过调整图像的尺寸,可以避免图像过大导致的显示问题。
2024-11-21 15:52:35
664
原创 什么是数据库
数据库(Database)是按照一定的数据模型组织、存储和管理数据的集合。它是用来高效地存储、检索、更新和管理数据的工具。数据库通常被用于信息系统中,以支持数据的持久化和高效访问。1. 数据的结构化:数据库中的数据是按照一定的结构或规则来组织的,例如表格形式。3. 高效性:数据库系统提供高效的数据操作方法,如查询、插入、更新和删除。2. 持久性:数据库中的数据可以长期存储,不会因程序关闭而丢失。简单来说,数据库是现代信息系统中核心的数据存储和管理工具。4. 并发性:支持多个用户同时访问和操作数据。
2024-11-19 08:54:24
206
原创 二值化图像反转
在这个示例中,我们首先读取一张输入图像并将其转换为灰度图。然后,我们使用`cv2.threshold`函数对图像进行二值化处理。接着,我们使用`cv2.bitwise_not`函数对二值化图像进行反转。最后,我们使用`cv2.imshow`函数显示原图、二值化图像和反转后的图像。二值化图像反转是一种图像处理技术,主要用于将二值化图像的像素值从0和1进行反转。在二值化图像中,像素值通常只有两个可能的值:0(黑色)和1(白色)。# 显示原图、二值化图像和反转后的图像。# 应用阈值处理,将图像二值化。
2024-10-23 19:15:13
552
原创 list index out of range
该报错是指你的列表索引值超过了列表的长度,检查一下你的常用读取序列的索引值。一直出现这个报错不知道什么情况。
2024-10-23 18:50:33
194
原创 迷宫生成器
https://toolwa.com/maze/
2024-10-23 14:57:34
479
原创 什么是差动变压器的零点残余电压?产生的主要原因是什么?有哪些方法可以减少零点残余电压的影响?
(3)采用合适的补偿电路减少零点残余电压。一般可采用在变压器的二次侧串并联适当数值的电阻电容元件,适当调节这些元件,可以补偿零点残余电压。产生主要原因:零点残余电压主要是由传感器的两次级绕组的电气参数与几何尺寸不对称,以及磁性材料的非线性(铁磁饱和、磁滞损耗)等问题引起的。残余电压:当衔铁位于中心位置时, 差动变压器输出电压并不等于零, 我们把差动变压器在零位移时的输出电压称为零点残余电压。(1)尽可能保证传感器的两次级绕组的电气参数与几何尺寸不对称磁性材料经过处理,消除内部残余应力,使其内部均匀稳定。
2024-10-22 11:33:57
3081
原创 用直流电压激励会损坏差动变压器传感器,为什么
因为变压器初级直接接到了直流电压上,由于初级线圈的直流电阻很低,这样形成很大的直流电流,产生的热量如果足够大可能将初级线圈烧毁。
2024-10-22 11:30:55
788
原创 ifftshift函数
具体来说,`ifftshift` 的作用是将输入数组的零频率分量(即直流分量)移到数组的中心位置,而其他频率分量则相应地移动到数组的边缘。这在处理傅里叶变换结果时非常有用,因为 `fftshift` 会将零频率分量移到数组的角落,而 `ifftshift` 则将其移回到中心。在这个例子中,`ifftshift` 被用来将重建的数据移回其原始位置,以便与原始矩阵 `A` 进行比较。其中 `X` 是一个输入数组,`Y` 是经过 `ifftshift` 操作后的输出数组。% 对移位后的频域数据进行逆傅里叶变换。
2024-10-22 10:53:31
614
原创 MATLAB中的size函数
1. **基本用法**:当仅有一个输出参数时,`s=size(A)`会返回一个行向量,其中第一个元素是矩阵的行数,第二个元素是矩阵的列数Θic-1ΘΘic-2ΘΘic-3Θ。例如,对于二维矩阵`A`,`size(A)`返回的是`[m, n]`,表示`A`是一个`m`行`n`列的矩阵。4. **结合其他函数使用**:MATLAB中还有其他函数如`length`、`ndims`和`numel`等与`size`函数配合使用,以获取数组的最大维度长度、数组的总维度数和元素的总数等详细信息。
2024-10-22 10:51:53
1750
原创 matlab imread函数
imread函数的基本用法A=imread(filename),其中filename是要读取的文件名。该函数能够自动推断出文件的格式,并据此读取图像。除了基本用法外,imread还支持多种调用格式,如`[X, map] = imread(...)`用于读取索引图像及其关联的颜色映射表,以及从Internet URL直接读取图像等。%将所有小于或等于low的值都显示为黑色,所有大于或等于high的值都显示为白色。MATLAB中的imread函数主要用于从图形文件中读取图像,并返回包含图像数据的一个数组。
2024-10-22 10:45:51
1101
原创 在MATLAB中,`double`函数
`double`函数的使用非常直接,基本语法是 `B = double(A)`,其中 `A` 是要转换的原始数据(可以是整数、字符、逻辑等类型),`B` 是转换后的双精度浮点数Θic-1ΘΘic-5Θ。- **兼容性与互操作性**:在与其他编程语言或工具进行数据交换时,双精度浮点数因其广泛的支持而成为一种标准的数据格式,确保数据在不同平台间的正确解析和使用。在MATLAB中,`double`函数的主要作用是将其他数据类型转换为**双精度浮点数类型**。2. **应用场景和重要性**
2024-10-22 10:43:09
1974
原创 MATLAB中的fftshift函数
通过fftshift函数,可以重新排列FFT、fft2或fftn的输出结果,使得零频点位于频谱的中心Θic-2ΘΘic-3Θ。由于实信号的频谱是关于fs/2对称的,因此在使用FFT进行频谱分析时,需要通过fftshift函数将零频分量移动到中心位置,以便更好地观察和分析频谱特性Θic-1Θ。然而,在某些特定情况下(如计算多普勒频率等),可能需要对复信号的FFT结果进行fftshift操作以确保与正确的频率单元相对应Θic-4ΘΘic-5Θ。通过合理使用该函数,可以更准确地获取信号的频率信息并进行相关处理。
2024-10-22 10:40:29
1142
原创 MATLAB imnoise函数
8. **注意事项**:在使用imnoise函数时,需要注意参数的合理设置,特别是当处理uint8类图像时,应确保输入的均值和方差参数在[0,1]范围内,避免因参数不当导致图像质量过度恶化或失真Θic-2ΘΘic-3Θ。6. **泊松噪声**:通过调用g = imnoise(I, 'poisson'),可以根据图像数据的亮度值添加泊松噪声,适用于模拟光子计数或量子化过程产生的噪声Θic-1Θ。**MATLAB imnoise函数用于向图像添加不同类型的噪声,以模拟真实世界中的噪声污染情况**。
2024-10-22 10:36:03
890
原创 什么是图像增强
有目的地强调图像的整体或局部特性,将原来不清晰的图像变得清晰或强调某些感兴趣的特征,扩大图像中不同物体特征之间的差别,抑制不感兴趣的特征,使之改善图像质量、丰富信息量,加强图像判读和识别效果,满足某些特殊分析的需要。增强图像中的有用信息,它可以是一个失真的过程,其目的是要改善图像的视觉效果,针对给定图像的应用场合。
2024-10-22 09:47:21
144
原创 对图像进行傅立叶变换的目的是什么
1. 分析图像的频率成分:通过傅立叶变换,可以将图像从空间域转换到频率域,得到图像的频谱图。低频通常对应于图像中的平滑区域,而高频则对应于图像中的边缘和细节部分。通过低通滤波器可以去除图像中的高频噪声,而通过高通滤波器则可以增强图像的边缘信息。2. 提取图像特征:傅立叶变换可以用于提取图像的形状、纹理等特征。通过保留图像傅立叶系数中的低频部分并丢弃高频部分,可以实现对图像的有效压缩。综上所述,对图像进行傅立叶变换的主要目的是分析图像的频率成分、提取图像特征、实现图像增强与去噪、图像压缩以及利用卷积定理等。
2024-10-22 09:45:44
654
原创 安装我的世界plc2
不一样的版本需要不同的Java版本,根据自己所下的世界来确定版本。点击启动游戏的时候会出现对于版本java的需求提示。选择刚刚下载对应我的世界版本的文件夹位置。
2024-10-20 13:57:44
1422
原创 PyCharm怎么添加解释器(怎么用已经具有torch环境)
背景:在实际配置pytorch环境的过程中配置的太过繁琐或者在配置完之后,出现在后续操作过程中破坏原有的配置环境的情况。所以我们迫切的需要一种工具或者思路来解决这个问题。方法:1.用脚本自行配置 2.对原有的配套的环境进行保存,下次再使用。
2024-10-20 11:28:41
666
原创 可视化安装版本列表出错:未能找到路径“C:\ProgramData\PCL\libwebp.dl”的一部分。
在PCL.MyBitmap..ctor(String FilePathOrResourceName)在PCL.MyListltem.CustomizeAnnotation(String value)在PCL.ModDownloadLib.McDownloadListltem(J0bject Entry, ClickEventHandler OnClick, BooleanIsSaveOnly)如果不反馈,这个问题可能永远无法得到解决!检查安装路径是不是全英文。
2024-10-19 21:12:05
195
原创 win怎么一次性选中大量图片
在Windows系统中,如果要选择一段连续的图片,可以按住Shift键,选择要选择的第一张和最后一张图片,所有位于这两张图片之间的图片都将被选中。如果要选择不连续的多张图片,可以按住Ctrl键,选择需要的多张图片即可。这种方式可以在文件夹中同时选择不同类型的文件。
2024-10-18 11:02:48
3217
深度学习实验报告.doc
2025-05-31
基于MATLAB的二维图形绘制与数据可视化技术
2024-10-17
MATLAB程序设计实验:掌握M文件与流程控制
2024-10-17
MATLAB环境下的多项式与插值拟合数值运算实验指导
2024-10-17
MATLAB基础实验之向量、数组和字符串运算是如何掌握并应用于实践
2024-10-17
计算机科学实验教程:MATLAB入门与环境熟悉
2024-10-17
paesec远程控制软件
2024-05-09
极限存在准则与两个重要极限
2024-04-25
数据挖掘与分析实验课内容
2024-04-24
【自然语言处理】BPE算法原理与应用:基于SentencePiece的中英文分词及词表优化策略
2025-06-27
教育领域考试流程详细步骤解析:从打印准考证到完成各科考试的操作指南
2025-06-27
计算机二级考试Word操作要点:字体、段落、样式、表格等核心考点解析
2025-06-27
【数据库设计】B站用户与视频互动关系数据库设计:涵盖用户、视频、点赞、评论、关注、私信及投币功能的详细实现
2025-05-31
【数字图像处理】基于填空与选择题的数字图像基础知识点汇总:涵盖图像表示、噪声处理、边缘检测及压缩编码
2025-05-31
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人