tensorflow中的KLDivergence的使用示例

这篇博客详细介绍了如何在TensorFlow中计算Kullback-Leibler(KL)散度,包括在一维数组和批量数据上的实现。KL散度是一种衡量两个概率分布差异的方法,在损失函数中常被用到。示例展示了如何使用`tf.keras.losses.KLDivergence`计算两个分布的KL散度,并给出了具体的代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

loss = y_true * log(y_true / y_pred)

情况一:算两个一维数组

参考:tf.keras.losses.KLDivergence

k = tf.keras.losses.KLDivergence()
loss = k([.4, .9, .2], [.5, .8, .12])
print('Loss: ', loss.numpy())  # Loss: 0.11891246

在这里插入图片描述

情况二:按batch来算

参考:TensorFlow->API->TensorFlow Core v2.2.0->Python

import tensorflow as tf
y_true = [[0.3, 0.7], [0.2, 0.8]]
y_pred = [[0.4, 0.6], [0.1, 0.9]]
kl = tf.keras.losses.KLDivergence()
kl(y_true, y_pred).numpy()

在这里插入图片描述

实际运算为:
在这里插入图片描述

因为这里batch_size=2,所有要求batch维度上的平均。

完整示例:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值