
AI-理论
文章平均质量分 96
AI-理论
秃了也弱了。
即使没有万全准备,也要勇敢迈出第一步。无论远方的风雨有多大、路有多难走。风里雨里陪伴你们,赠人玫瑰,手有余香。在技术领域,我会一如既往的坚持下去。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
什么是AI-Agent智能体?从0认识AI智能体
Al Agent,称为人工智能代理,或者称为AI智能体。它是一种模拟人类智能行为的人工智能系统,以大型语言模型(LLM)作为其核心规划决策引擎。能够感知环境,做出决策,并执行任务以实现特定的目标。提示工程(Prompt Engineering),也称为上下文提示,是一种通过不更新模型的权重/参数来引导LLM行为朝着特定结果的方法。提示工程可以用于各种任务,从回答问题到算术推理乃至各种应用领域,理解提示工程,能够帮助我们了解LM的限制和能力。硬提示(Hard Prompt)原创 2025-03-12 16:55:22 · 1729 阅读 · 0 评论 -
什么是向量数据库?向量数据库概念,详细入门
向量数据库是一种专门用于存储和查询向量数据的数据库。向量数据也就是embedding向量。典型结构是一个一维教组,其中的元素是教值(通常是浮点数)。这些数值表示对象或数据点在多维空间中的位置、特征或属性。原创 2025-03-06 19:54:47 · 6728 阅读 · 0 评论 -
深入理解Rerank(重排名)技术核心知识点
有一些专门用于做Rerank的大模型,比如适用于中英文双语rerank场景。rerank 模型的效果排名可以参考 MTEB 排行榜。与embedding模型不同,reranker使用问题和文档作为输入,直接输出相似度而不是embedding。reranker是基于交叉熵损失进行优化的,因此相关性得分不受特定范围的限制。原创 2025-03-03 17:18:49 · 2210 阅读 · 0 评论 -
深入理解Embedding技术核心知识点
Embedding从CV到NLP再到神经网络、深度学习的应用越来越广泛,比如NLP 中常用的 word embedding和 entity embedding。那么究竟什么是Embedding呢?对他进行直译是嵌入层。比如地图就是对于现实地理的Embedding,现实的地理地形的信息其实远远超过二维,但是地图通过颜色和等高线等来最大化表现现实的地理信息。Embedding是object的低维稠密的向是化表示,可表示大量信息。为什么会特意强调低维、稠密、向量化和大量信息这个几个词呢?原创 2025-03-03 14:49:52 · 805 阅读 · 0 评论 -
深入理解RAG(Retrieval-Augmented Generation)的核心知识点
在自然语言处理领域,大型语言模型如GPT系列、claude系列、meta的LLama系列、谷歌的geminl和pemma以及阿里通义千问等等,已经取得了突破性的成就,并在多个基准测试中性能不错,但对行业领域或者高度专业化的知识仍存局限,有时会生成”幻觉”,知识也会落后一年左右时间。在行业或者公司内部业务场景中,数据的持续更新至关重要,以确保信息的时效性,生成的内容需要透明目可追潮,这不仅有助于成本控制,也好保护教据隐私。这是一篇同济大学、复旦大学等综合发表一篇RAG综述论文。原创 2025-03-03 14:26:51 · 2128 阅读 · 0 评论 -
人工智能认知课:认识人工智能与大模型
其中有一个错别字大模型也能识别出来。但是不同的大模型,推理能力不同。原创 2025-02-13 17:30:34 · 1558 阅读 · 0 评论 -
认识RAG(检索增强生成):智能问答机器人与企业知识库解决方案
RAG 是的缩写,中文翻译为"检索增强生成"。它是一种将检索系统和生成式 AI 模型结合的技术方案,主要包含两个核心步骤:1.检索(Retrieval):根据用户输入的问题,从知识库中检索出相关的文档或信息片段2.生成(Generation):将检索到的相关信息作为上下文,结合用户问题,让大语言模型生成准确的回答这种方案既能让模型基于最新的知识作答,又可以提供可溯源的参考依据,有效解决了大语言模型的知识时效性和事实准确性问题。原创 2025-02-12 10:03:56 · 1443 阅读 · 0 评论 -
大语言模型 - 提示词(Prompt)工程入门
提示词工程,或称Prompt Engineering,是一种专门针对语言模型进行优化的方法。它的目标是通过设计和调整输入的提示词(prompt),来引导这些模型生成更准确、更有针对性的输出文本。在与大型预训练语言模型如GPT-3、BERT等交互时,给定的提示词会极大地影响模型的响应内容和质量。提示词工程关注于如何创建最有效的提示词,以便让模型能够理解和满足用户的需求。这可能涉及到对不同场景的理解、使用正确的词汇和语法结构,以及尝试不同的提示策略以观察哪种效果最佳。1、明确具体:加入场景要求、具体任务。原创 2024-08-16 13:46:55 · 23613 阅读 · 0 评论