Pytorch学习笔记第三课梯度下降和随机梯度下降

本文介绍了梯度下降算法,包括基本的梯度下降(GD)和随机梯度下降(SGD),通过Python代码演示了如何使用这两个方法优化线性模型的权重,以及它们在处理训练集时的学习过程和效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

笔记来源于B站up主,@刘二大人

视频链接03.梯度下降算法_哔哩哔哩_bilibili

目标函数依旧是y=2x

假设函数为y = \omega x

梯度下降法公式:

\frac{\delta cost(\omega )}{\delta w}=\frac{\delta }{\delta \omega } \frac{1}{N}\sum_{n=1}^{N}(\hat{y} _n-y_n)^2

寻找负梯度方向,是收敛的方向

利用梯度跟新权重\omega:

\omega = \omega - \alpha \frac{\delta cost}{\delta \omega},其中 \alpha是学习率

import matplotlib.pyplot as plt

# prepare the training set
x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]

# 假设一个初始权重
w = 1.0


# 定义前向传播的线性模型是y=wx
def forward(x):
    return x * w


# 定义损失函数MSE平均均方误差
def cost(xs, ys):
    cost = 0
    for x, y in zip(xs, ys):
        y_pred = forward(x)
        cost += (y_pred - y) ** 2
    return cost / len(xs)


# 定义梯度下降函数GD
def gradient(xs, ys):
    grad = 0
    for x, y in zip(xs, ys):
        grad += 2 * x * (x * w - y)
    return grad / len(xs)


epoch_list = []
cost_list = []
# 设置学习率为0.01
learning_rate = 0.01
# 训练前
print('predict (before training)', 4, forward(4))
for epoch in range(100):
    cost_val = cost(x_data, y_data)
    grad_val = gradient(x_data, y_data)
    w -= learning_rate * grad_val  
    print('epoch:', epoch, 'w=', w, 'loss=', cost_val)
    epoch_list.append(epoch)
    cost_list.append(cost_val)

# 训练后
print('predict (after training)', 4, forward(4))
plt.plot(epoch_list, cost_list)
plt.ylabel('cost')
plt.xlabel('epoch')
plt.show()

输出结果:

随机梯度下降法SGD

\frac{\delta loss_{n}}{\delta w}=\frac{\delta }{\delta \omega }(\hat{y} _n-y_n)^2

通过随机取值的方式可以避开鞍点(梯度为0的点)

SGD中每次权重的更新与上一次计算的权重相关,无法并行计算

import matplotlib.pyplot as plt

x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]

w = 1.0


def forward(x):
    return x * w


# 定义损失函数
def loss(x, y):
    y_pred = forward(x)
    return (y_pred - y) ** 2


# 定义随机梯度函数SGD
def gradient(x, y):
    return 2 * x * (x * w - y)


epoch_list = []
loss_list = []
# 设置学习率为0.01
learning_rate = 0.01
print('predict (before training)', 4, forward(4))
for epoch in range(100):
    for x, y in zip(x_data, y_data):
        grad = gradient(x, y)
        w = w - learning_rate * grad  # update weight by every grad of sample of training set
        print("\tgrad:", x, y, grad)
        l = loss(x, y)
    print("progress:", epoch, "w=", w, "loss=", l)
    epoch_list.append(epoch)
    loss_list.append(l)

print('predict (after training)', 4, forward(4))
plt.plot(epoch_list, loss_list)
plt.ylabel('loss')
plt.xlabel('epoch')
plt.show()

输出结果:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值