Accept: 2669 Submit: 11014
Time Limit: 1000 mSec Memory Limit : 32768 KB
Problem Description
How far can you make a stack of cards overhang a table? If you have one card, you can create a maximum overhang of half a card length. (We're assuming that the cards must be perpendicular to the table.) With two cards you can make the top card overhang the bottom one by half a card length, and the bottom one overhang the table by a third of a card length, for a total maximum overhang of 1/2 + 1/3 = 5/6 card lengths. In general you can make n cards overhang by 1/2 + 1/3 + 1/4 + ... + 1/(n + 1) card lengths, where the top card overhangs the second by 1/2, the second overhangs tha third by 1/3, the third overhangs the fourth by 1/4, etc., and the bottom card overhangs the table by 1/(n + 1). This is illustrated in the figure below.

Input
Output
Sample Input
Sample Output
题意:给你露在外面的长度,问最少要几根才能到达这个长度
解题思路:打表出所有长度,然后二分找出答案
#include <iostream>
#include <cstdio>
#include <string>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <vector>
#include <set>
#include <stack>
#include <map>
#include <climits>
#include <functional>
using namespace std;
#define LL long long
const int INF=0x3f3f3f3f;
int main()
{
double a[300];
a[0]=0;
for(int i=2;i<301;i++)
a[i-1]=a[i-2]+1.0/i;
double n;
while(~scanf("%lf",&n))
{
if(n==0.00) break;
int k=lower_bound(a+1,a+301,n)-a;
printf("%d card(s)\n",k);
}
return 0;
}