深度学习在数字图像篡改检测中的应用与钙钛矿太阳能电池的研究进展
1. 深度学习在数字图像篡改检测中的应用
在当今数字化时代,图像篡改检测变得至关重要。传统的手工制作技术在检测图像篡改方面存在一定的局限性,而深度学习方法展现出了更大的优势。
1.1 深度学习检测方法原理
一些深度学习模型采用编码器 - 解码器架构。编码器用于提取图像中的篡改特征,解码器则根据编码器生成的特征图逐个确定像素的真实性,最终生成二值掩码。例如,Chakraborty 等人使用误差级别分析(ELA),先对篡改图像进行压缩,然后利用压缩图像与未压缩篡改图像之间的差异提取最终的篡改特征,再将 ELA 图像送入卷积神经网络(CNN)进行最终分类。Jaiswal 等人利用多层编码器 - 解码器网络检测复制 - 移动篡改,将图像多次调整大小后输入编码器网络,让网络学习不同尺寸图像的篡改特征,提取的特征经过多层解码器处理,直到特征大小足够大,最后由分类器判断像素是否伪造并生成最终的特征图,该网络在图像经过其他后处理操作时仍能有较好的表现。
1.2 不同深度学习方法的比较分析
论文及年份 | 篡改检测类型 | 深度学习模型 | 架构 | 使用的数据集 | 性能 |
---|---|---|---|---|---|
Chen 等人 [9] | 中值滤波、剪切粘贴 | CNN | 1 个滤波器 |