使用“大模型”提升功率谱标准差诊断方案——从传统统计量到时序基座模型的系统优化指南

1 为什么要引入大模型
  • 跨设备泛化:最新故障诊断基座模型 UniFault 在 9 B 数据点的多域预训练后,仅用 5 - 10 条标注样本即可迁移到新电机,准确率比传统 CNN 提升 6 – 12 pp arXiv

  • 多任务一体:Time series FMs(TimeFound、TimeDiT 等)一次预训练即可兼顾预测、分类、异常检测和缺失值补全,显著降低维护成本 arXivkdd2025.kdd.org

  • 特征自动学习:Transformer 可在原始波形或时-频图上自动捕捉谐波、侧带等复杂模式;再融合人手特征(σ<sub>PSD</sub>、谱峭度等)可进一步提高早期故障灵敏度 ar

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

非著名架构师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值