- 博客(125)
- 收藏
- 关注
原创 使用 Vectara 的 Self-Query Retriever 实现高级查询功能
Vectara 提供了一个创新的平台,使得 RAG(检索增强生成)服务更易于使用。通过提供与文档和知识库紧密结合的 AI 查询能力,可以实现类似 ChatGPT 的高级体验。
2025-07-11 13:08:34
268
原创 使用 Milvus 和 SelfQueryRetriever 实现自查询检索系统
Milvus 是一款专为处理海量嵌入向量而设计的数据库系统,广泛用于图像识别、自然语言处理等领域。通过将文档嵌入到 Milvus 中,我们可以快速实现高效的相似度检索。结合 SelfQueryRetriever,Milvus 允许我们使用自然语言来自查询检索器,实现复杂查询操作。
2025-07-11 11:58:24
356
原创 使用DashVector实现自查询检索器的动态图文教程
DashVector在多模态AI搜索、分子结构分析等领域拥有广泛的应用。其强大的检索能力和自动扩展特性,使其非常适合构建复杂的AI应用程序。在使用DashVector时,确保数据格式和维度设置正确。利用DashVector的API接口,无缝集成到您的AI应用中,以提高检索效率。我们将创建一个DashVector向量存储并存入一些文档数据,首先需要获取API密钥,并设置环境变量。接下来,我们实例化自查询检索器,设定文档元数据字段和摘要。如果遇到问题欢迎在评论区交流。来限制返回文档的数量。
2025-07-11 11:55:57
394
原创 利用 Streamlit 构建交互式数据应用:详解 StreamlitCallbackHandler 与 LangChain Agent
在安装完成后,可以运行来加载示例应用,这将验证安装是否成功。更多安装信息请参阅 Streamlit 的。
2025-07-10 15:21:35
302
原创 使用FalkorDB和LangChain构建自然语言接口
FalkorDB因其图形化数据库结构和高效的数据查询能力在生成式AI领域受到广泛关注。与传统的关系型数据库不同,FalkorDB以图形方式存储信息,能够更加灵活地处理节点间的关系。这种特性特别适合复杂知识图谱的构建与查询。
2025-07-10 10:38:39
392
原创 深入探索Zapier的自然语言动作API与AI集成
上述代码示例展示了如何在处理复杂的业务流程时利用Zapier NLA。通过自动化邮件检索和Slack消息发送,可以显著提高工作效率。例如,在金融行业,可以利用这种技术快速过滤关键信息并通知相关人员。如果遇到问题欢迎在评论区交流。
2025-07-10 10:32:56
192
原创 快速入门Slack工具包的实用指南
SlackToolkit是一个用于与Slack集成的开发工具包,它通过Slack SDK提供API支持,便捷访问Slack的丰富功能。结合LangSmith和LangChain,我们可以更智能地自动化Slack中的操作。
2025-07-10 10:27:49
177
原创 使用Passio NutritionAI构建营养信息智能代理
Passio NutritionAI是一项用于获取食品营养信息的服务。它为开发者提供了访问食品营养数据的API接口,因此应用广泛,包括健康应用、餐饮推荐系统等。通过使用NutritionAI,开发者可以轻松查找食品的营养成分,为用户提供更全面的健康建议。
2025-07-10 10:22:01
359
原创 使用FinancialDatasets工具包进行财务数据分析
该工具包适用于各种财务分析场景,包括投资决策支持、公司财务健康评估以及竞争对手分析。在这些场景中,实时获取准确的数据并进行深入分析可以显著提升决策的质量。如果遇到问题欢迎在评论区交流。
2025-07-09 15:20:42
518
原创 使用TF-IDF技术实现文本检索
TF-IDF是用于评估一个词在一个文本集合(例如一个文档集)中的重要性的方法之一。它结合了两个简单的统计量:词频(TF)和逆文档频率(IDF)。词频表示在某个给定文档中某个词出现的次数,而逆文档频率表示某个词跨多个文档出现的稀有程度。
2025-07-09 15:06:11
309
原创 使用Kinetica Vectorstore构建检索器
接下来,我们需要获取OpenAI的API Key以使用嵌入功能。使用模块来确保安全输入:接下来是环境变量的加载及必要库的导入:配置Kinetica连接参数:加载文本并进行处理:创建Kinetica连接并配置向量存储:构建检索器并进行搜索:应用场景分析这种检索方法能够用于需要快速从大量文档中提取相关信息的场景,例如新闻搜索、法律文本分析以及学术研究辅助等。同时,Kinetica数据库的高效性能使得它能够处理大规模数据集。如果遇到问题欢迎在评论区交流。
2025-07-09 14:58:45
495
原创 深入探索ElasticsearchRetriever:灵活的全文检索方案
Elasticsearch是一款分布式、RESTful的搜索和分析引擎,它提供了多租户能力的全文搜索引擎,支持HTTP接口和无模式JSON文档。其功能涵盖了关键词搜索、向量搜索、混合搜索及复杂的过滤功能。ElasticsearchRetriever作为一个通用的包装器,旨在让开发者灵活地访问所有Elasticsearch功能,尤其是通过Query DSL。
2025-07-09 14:55:34
853
原创 使用VikingDB数据库进行向量存储和检索
随着深度学习技术的普及,处理庞大的向量数据变得尤为重要。VikingDB提供一种高效的方式来存储和检索这些嵌入向量,支持快速的相似度搜索,并可根据需要进行数据的划分与管理。
2025-07-02 16:27:44
186
原创 使用 Rockset 和 LangChain 构建实时搜索和分析系统
随着数据量增加和复杂度提升,传统的搜索和分析工具难以满足实时性要求。Rockset 提供实时数据摄取和处理能力,并支持向量嵌入存储,能够快速响应复杂查询。同时,它支持元数据过滤,使开发者可以灵活地定义数据筛选条件。
2025-07-02 16:15:13
402
原创 使用Pinecone进行高效向量搜索和管理
向量数据库是专门设计用于处理高维向量数据的数据库,而 Pinecone 则提供了丰富的功能,包括支持多种相似度度量以及与现有模型和框架的集成。我们可以利用这些功能来构建强大的检索系统。
2025-07-02 16:13:46
276
原创 深入探讨在LangChain中使用MongoDB Atlas进行向量搜索
MongoDB Atlas支持原生向量搜索,使得在文档数据中执行相似度搜索成为可能。这项功能依赖于Hierarchical Navigable Small Worlds (HNSW)算法,能够高效地处理大规模数据集中的近似最近邻搜索。向量搜索是通过MQL阶段实现的。
2025-07-02 14:28:25
268
原创 使用Baidu VectorDB进行多维向量数据存储与检索
Baidu VectorDB 是由百度智能云开发和管理的企业级分布式数据库服务。它擅长存储、检索和分析多维向量数据。VectorDB 的核心基于百度的 “Mochow” 向量数据库内核,提供卓越的性能和安全性,同时支持高达 100 亿的向量规模。其性能表现为支持每秒数百万次查询,并且查询延迟在毫秒级,这使得其在需要快速处理大规模数据的应用场景中显得尤为出色。
2025-07-02 09:53:56
312
原创 使用Doctran进行文档问答转换以优化向量检索
在向量知识库中存储文档是组织和检索信息的有效方法。然而,由于用户查询通常以问答格式呈现,直接检索文档可能会导致上下文不匹配的问题。Doctran通过将文档转化为问答格式,提高文档与用户查询的相似度,从而更精准地获取相关信息。
2025-07-02 09:42:12
254
原创 如何加载和处理SubRip Subtitle(.srt)文件数据
SubRip字幕文件(.srt)是由简单的文本组成,每个字幕条目包括一个序号、两个时间戳以及字幕文本。时间戳采用“小时:分钟:秒,毫秒”的格式,分隔符为逗号,因为此格式最初在法国开发。这样的简单结构使得.srt文件易于解析和处理。
2025-07-01 17:09:21
338
原创 使用Fireworks Embeddings在Langchain中进行文本嵌入
Fireworks Embeddings是一种能够将文本数据转换为嵌入向量的工具。这些嵌入向量可以用作文本分析、相似性比较和机器学习模型的输入特征。包提供了对这些嵌入功能的简单封装,使得在应用中调用更加便捷。
2025-07-01 16:03:06
195
原创 使用LangChain与Clarifai进行文本嵌入
设置用户ID和应用ID以指定模型所在的应用。您可以通过Clarifai的查看已发布的模型列表。
2025-07-01 15:58:35
270
原创 利用LangChain访问OpenWeatherMap API获取天气数据
OpenWeatherMap提供的API接口是一个强大的工具,允许开发者轻松获取指定位置的实时天气信息及预报服务。这些数据对天气预警、温度分析及历史天气研究等领域非常有帮助。
2025-07-01 11:11:04
369
原创 使用Serper API与LangChain进行Google搜索集成
Serper API提供了一种便捷的方式来访问Google搜索的结果。结合LangChain,我们可以通过定义工具链和代理来实现自动化的信息检索和问答系统。LangChain是一个强大的框架,用于构建可组合的自然语言处理应用程序。
2025-06-30 17:26:15
293
原创 使用Docugami进行XML语义树转换和文档加载
在当今的数据驱动时代,能够有效地提取和理解文档中的信息是至关重要的。Docugami提供了一个强大的解决方案,通过将商业文档转换为文档XML知识图谱,能够生成代表整个文档的XML语义树。这种表示不仅详细反映了文档的语义特征,还包括其结构特性。本文将深入解析Docugami的核心原理,并提供详细的代码演示,帮助你在实际应用中驾轻就熟。
2025-06-30 17:17:12
166
原创 使用Datadog API进行日志监控和分析
Datadog Logs为开发者提供了强大的日志管理功能,允许从各种云服务和应用程序中集中收集日志数据。在云环境中,日志分散在多台服务器上,Datadog的集中化管理可以有效的简化日志的收集和分析过程。
2025-06-30 17:10:53
292
原创 使用Nomic Atlas进行大规模数据集交互
在处理大规模非结构化数据时,传统的数据库解决方案如 SQL 和 NoSQL 可能无法高效满足需求。Nomic Atlas 提供了一种新的方式来管理和查询这些数据集,尤其是通过其强大的向量存储能力,可以快速实现数据的索引和检索。
2025-06-30 15:16:41
583
原创 使用Annoy实现高效的近似最近邻搜索
Annoy是一个用C++编写的库,并提供了Python绑定。其主要用途是快速检索与给定查询点最接近的点,并能创建大规模的只读文件数据结构,这样多个进程可以共享同一数据。这对于需要高效内存管理的场景特别有用。
2025-06-30 15:10:49
407
原创 如何使用 ChatMistralAI 模型进行语言翻译
ChatMistralAI 是一种高级语言模型集成工具,使用 Mistral API 提供丰富的功能和灵活的配置选项。它可以处理复杂的语言任务,如翻译、文本分析等。为了使用这些功能,您需要拥有一个 Mistral 账户和对应的 API 密钥。
2025-06-30 13:03:27
295
原创 使用 PGVector 和 PostgreSQL 实现 LangChain 向量存储
LangChain 是一个灵活的链式 API,用于处理不同的语言模型和数据存储。为了支持高效的向量存储,利用 PostgreSQL 的 PGVector 扩展,结合 Python 的psycopg驱动,以实现稳定、快速的向量检索功能。
2025-06-30 12:52:38
300
原创 使用 WebBaseLoader 加载 HTML 网页文本
WebBaseLoader 是 Langchain 社区中用于从 HTML 页面加载数据的基础类。它可以从单一或多个网页加载文本,并支持懒加载和异步加载,通过简单的配置即可实现基本的网页数据提取。
2025-06-30 10:39:57
499
原创 使用LangChain构建智能购物助手的实践指南
LangChain是一款强大的工具,专注于创建基于链的应用程序。通过结合OpenAI的能力,它可以执行复杂的搜索任务。结合LangChain和OpenAI,可以为用户提供一个智能购物体验,助力用户发现和购买他们需要的产品。
2025-06-30 10:28:43
390
原创 使用Weaviate进行RAG实现的环境设置与代码演示
RAG(检索增强生成)通过结合检索系统(如Weaviate)与生成模型(如OpenAI’s GPT系列)来提高生成的内容质量。Weaviate是一种开放源代码的向量数据库,支持各种复杂查询和检索,通过与生成模型结合,可以实现更精准的内容生成。
2025-06-30 10:23:58
495
原创 使用GPT-Crawler构建RAG应用的实战教程
RAG是一种结合检索和生成能力的AI技术,通过从外部数据源中检索信息来增强生成任务的能力。GPT-Crawler则是一个专为RAG设计的工具,用于抓取网页内容并生成可用于训练或其他应用的文件。
2025-06-27 15:51:20
349
原创 使用Google Cloud与LangChain保护敏感数据的AI应用实现
Google Cloud的Sensitive Data Protection服务(DLP)提供了对敏感数据的检测和去识别能力,确保在数据处理过程中用户隐私不泄露。结合LangChain库,我们可以构建一个应用程序,利用Google的机器学习模型和DLP服务来安全地处理用户的文本数据。
2025-06-27 15:50:16
297
原创 使用 Azure AI 搜索和 OpenAI 实现 RAG 文档检索
此方案适用于需要从大量文档中快速检索信息并提供详细答案的场景,例如客服问答、知识库检索、智能搜索引擎等。通过结合检索与生成,用户可以获得更加准确和丰富的信息反馈。在实际应用中,确保Azure服务的稳定性至关重要。此外,结合LangSmith等工具进行日志跟踪和调试,以保证应用的监控和改进。如果遇到问题欢迎在评论区交流。在你的项目中添加以下代码到。
2025-06-27 15:44:30
223
原创 使用Neo4j实现向量记忆的对话系统
随着对话系统的不断发展,如何在对话中提供连续性和个性化体验成了一个关键问题。通过结合Neo4j的图数据库特性和向量检索技术,我们就能实现更智能的用户交互,这在智能客服、交互式问答等场景中尤为重要。
2025-06-27 15:37:26
249
原创 使用OpenAI函数进行文本结构化信息抽取
OpenAI功能调用提供了一种强大的方法来从文本中提取结构化数据。它利用自然语言处理技术,通过定义输出的结构化模式来从输入文本中抽取特定的信息。此方法特别适用于需要从大量文本中自动提取关键信息的场景,例如文献标题和作者信息抽取。
2025-06-27 15:28:05
152
原创 从Astream Events v1迁移到v2的实践指南
Astream Events API用于处理各种AI模型的事件流。在0.2.x版本中发布的v2版本,重写了v1版本的实现,解决了不一致的输出格式问题,特别是在处理和事件时。
2025-06-27 09:10:54
248
原创 如何使用 `trim_messages` 函数优化消息处理
语言模型的上下文窗口具有有限容量,即限定了输入消息的 token 数量。如果我们的对话链很长或消息历史积累过多,就需要修剪消息以适应窗口大小。提供了一些基本策略用于修剪消息列表,使其符合上下文窗口的 token 限制。max_tokens# 安装必要库AIMessage(),AIMessage(),# 修剪消息以获取最后的 45 个 tokensmessages,
2025-06-26 15:57:24
180
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人