详解DeepSeek模型底层原理及和ChatGPT区别点

一、DeepSeek大模型原理

架构基础

        DeepSeek基于Transformer架构,Transformer架构主要由编码器和解码器组成,在自然语言处理任务中,通常使用的是Transformer的解码器部分。它的核心是自注意力机制(Self - Attention),这个机制允许模型在处理输入序列时,关注序列中不同位置的信息。例如,在处理句子 “The cat chased the mouse” 时,自注意力机制可以让模型知道 “cat” 和 “mouse” 是相关的实体,“chased” 描述了它们之间的动作关系。

训练过程

  1. 数据收集与预处理
    DeepSeek使用了大量的文本数据进行训练,这些数据来自互联网、书籍、新闻等多个来源。在训练之前,需要对数据进行预处理,包括分词、去除噪声、将文本转换为数字表示(词嵌入)等操作。例如,将句子 “Hello, how are you?” 分词为 “Hello”、“,”、“how”、“are”、“you”、“?” ,然后将每个词转换为对应的词向量。
  2. 预训练阶段
    在预训练阶段,DeepSeek采用无监督学习的方式,通过语言模型任务来学习语言的模式和规律。最常见的任务是掩码语言模型(Masked Language Model,MLM)和下一句预测(Next Sentence Prediction,NSP)。
  • 掩码语言模型随机选择输入文本中的一些词,将其替换
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

瞬间动力

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值