【总结】keras下,利用VGG16和resnet50预训练模型,完成多类别动物图片分类任务(上)

本文分享了在深度学习项目中,如何从零开始构建并优化一个动物图片分类模型,从数据预处理到模型调参,再到使用VGG16和ResNet50预训练模型的实践经验。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

多类别动物图片分类任务(上)

在学习了大约2周的机器学习和深度学习的基础知识,并跑了十多个模型之后,老师给我布置了一项真正的实际任务:利用已经收集到的图片信息,构建并训练模型,一期目标使得精度达到84%,二期目标使得精度达到90%。
一开始并没有认识到,真正的实际数据会和demo中最后的结果差距如此之大,使得自己消沉了一段时间,不过经过将近15天的努力,总算是完成了任务,亦有所收获。
故,在此把我这段时间踩过的坑都一一标注出来,希望可以帮助到那些初次接触卷积神经网络的新人(虽然我也是啦)

  1. 观察数据
    拿到数据后,要做的第一件事绝不是直接建模(血的教训 ),而是观察数据的分布情况,在真正的实际任务中,数据往往不是你在猫狗大战这样的demo中那样,分布的那么均衡的。
    比如我这次的任务数据,总计30064张彩色图片,分为168类,而最少的类图片只有103张,最多的有1684张,差距非常大。
    解决方法:
    过采样是一个很好的处理手段。
  2. 建立一个简单的卷积神经网络
    无论你是否懂得如何利用已经与训练好的模型进行建模,自己写一个简单的卷积神经网络来测试下数据都是可行的。一般,我们采用2+2的形式来实现。
    实现代码:
# 建立模型
model = Sequential()
# 这里使用卷积神经网络,传入100*100像素的彩色图片,传出时为94*94*32
model.add(Conv2D(32, (7, 7), strides = (1, 1), name = 'conv0', input_shape = (100, 100, 3)))
# 使用批标准化
model.add(BatchNormalization(axis = 3, name = 'bn0'))
# 激活函数为ReLU(线性整流函数)
model.add(Activation('relu'))
# 对于空间数据的最大池化
model.add(MaxPooling2D((2, 2), name='max_pool'))
model.add(Co
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值