使用线性回归来进行每个人的平均医疗费用预测

本文探讨了如何使用R语言进行线性回归分析以预测个人平均医疗费用。通过分析数据,发现线性模型在极端值预测上表现不佳,多元R方值为0.7509。通过引入年龄的二次项和肥胖因素,优化模型,使得多元R方值提升到0.8643,提高了预测成功率。文章提供了数据来源,鼓励读者进一步探索提高预测准确性的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

先贴出代码如下:

insurance<-read.csv("insurance.csv",stringsAsFactors = FALSE)
ins_model<-lm(expenses~.,data = insurance)
summary(ins_model)

(

ins_model<-lm(expenses~.,data = insurance)
这句话的意思就是以insurance为数据源,建立expenses和数据源其他属性的(一次)线性关系. "."表示其他所有属性

)


R语言分析数据的一个很大的优势就是它有很多的第三方包,可以很方便我们使用。所以上面的代码很简介。但是,我们关键是要知道怎么来分析数据。

首先我们先看看结果吧:


1.Residuals表示残差,顾名思义,就是指预测的数据和实际的数据的差值。从四分图可以看出,最大和最小的误差值都挺大的,这说明了线性回归算法在预测极端值的时候,效果并不是很理想。但是可以看出1Q,Median,3Q (也就是在1/4值,1/2值,3/4值)的差距不是很大,所以可以判断出整个值的分布类似正态分布,集中误差在-979左右。

2.还有一个关键的点是:Multiple R-squared,叫做多元R方值。例子中,这个值等于0.7509.表明该线性预测的结果适合75%的案例,也可以说成功为75%.

但是,但是。。。。。75

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值