AcWing868. 筛质数 (朴素筛法、埃氏筛法、线性筛法)(C++算法)

本文介绍了三种筛法求解1~n之间质数个数的方法:朴素筛法、埃氏筛法和线性筛法,并详细解析了每种方法的核心步骤和效率。线性筛法在数据量大时表现出更高的效率,适用于解决大规模问题。代码示例展示了C++实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

AcWing868. 筛质数 (朴素筛法、埃氏筛法、线性筛法)

1、题目:
给定一个正整数n,请你求出1~n中质数的个数。

输入格式
共一行,包含整数n。

输出格式
共一行,包含一个整数,表示1~n中质数的个数。

数据范围
1≤n≤106
输入样例:
8
输出样例:
4

2、基本思想:
(1)朴素筛法:不管是合数还是质数,筛掉2~n中每个数的倍数 O(nlogn);
(2)埃氏筛法:因为每个合数都是由有限个质数相乘得到的,仅筛掉质数的倍数 O(nloglogn);
(3)线性筛法:在埃式筛法中,有的合数会被不同的质数筛多次,会浪费时间,而每个合数的最小质数是唯一的(否则就不是最小质数),所以只需要用每个合数的最小的质数将它筛掉一次 即可O(n)。

3、核心步骤:
(1)朴素筛法

void GetPrimes(int n)
{
    for (int i = 2; i <= n; i ++ )
    {
        if (!st[i]) p[cnt ++ ] = i;
        for (int j = i + i; j <= n; j += i ) st[j] = true;
    }
}

(2)埃氏筛法

void GetPrimes(int n)
{
    for (int i = 2; i <= n; i ++ )
    {
        if (st[i]) continue;//是合数就直接进下一层循环
        p[cnt ++ ] = i;
        for (int j = i + i; j <= n; j += i ) st[j] = true;//筛掉质数的倍数
    }
}

(3)线性筛法

void GetPrimes(int n)
{
    for (int i = 2; i <= n; i ++ )
    {
        if (!st[i]) p[cnt ++ ] = i;
        for (int j = 0; p[j] <= n / i; j ++ )//p[j] <= n / i移项就是p[j] * i <= n,大于n的自然没必要筛。此处不写成p[j] <= i是为了防止算p[j] * i时越界;不写成p[j] <= sqrt(n)是因为一开始p[j]中还没有存那么多质数,j可能会大于cnt。
        {
            st[p[j] * i] = true;
            if (i % p[j] == 0) break;
            //①为什么这里要break?
            //因为内层循环是从最小质数开始枚举,此条件成立表明此时p[j]是i的最小质因数(就是说i * p[j]中有至少两个相同的最小质因数p[j],一个是p[j]还有一个在i中),如果这个条件成立还要继续下一次循环,则在下一次循环中p[j + 1]必不可能是i的最小质因数,所以要break。
            //②为什么顺序是st[p[j] * i] = true写在前面?
            //因为就算此条件不成立,则表明此时p[j]是比i的最小质因数还要小的质数,所以此时的p[j]一定是前面p[j] * i的最小质因数,所以这个条件成立与否都不妨碍前面p[j] * i被它的最小质因数筛掉。
        }
    }
}

比如,如果是36在i = 18的时候被删,35在i = 7的时候被删,8在i = 4的时候被删。
在这里插入图片描述
4、C ++ 代码如下(该代码引用AcWing网站代码)

#include <iostream>

using namespace std;

const int N = 10000010;//比题给多一个0,防越界

int cnt;
int p[N];
bool st[N];

//线性筛法:
void GetPrimes(int n)
{
    for (int i = 2; i <= n; i ++ )
    {
        if (!st[i]) p[cnt ++ ] = i;
        for (int j = 0; p[j] <= n / i; j ++ )
        {
            st[p[j] * i] = true;
            if (i % p[j] == 0) break;
        }
    }
}

//埃氏筛法:
//void GetPrimes(int n)
//{
//    for (int i = 2; i <= n; i ++ )
//    {
//        if (st[i]) continue;//是合数就直接进下一层循环
//        p[cnt ++ ] = i;
//        for (int j = i + i; j <= n; j += i ) st[j] = true;//筛掉质数的倍数
//    }
//}

//朴素筛法:
//void GetPrimes(int n)
//{
//    for (int i = 2; i <= n; i ++ )
//    {
//        if (!st[i]) p[cnt ++ ] = i;
//        for (int j = i + i; j <= n; j += i ) st[j] = true;
//    }
//}

int main()
{
    int n;
    cin >> n;
    
    GetPrimes(n);
    
    cout << cnt;
    return 0;
}//该代码引用AcWing网站代码

注意事项:
数据量比较小的时候埃氏算法比线性要快一点点,数据量大的时候线性要比埃氏快很多。

<think>首先,用户的问题是:“请问C++ 线性筛法 实现 素数生成”。这直接要求我提供一个C++实现的线性筛法算法来生成素数。 从系统级指令中,我有几个关键点: - 所有行内数学表达式必须使用$...$格式。 - 独立公式必须使用$$...$$$$格式并单独成段。 - 使用中文回答。 - 生成相关问题。 - 在回答中引用的段落末尾自然地添加引用标识,例如[^1]。 - 结构清晰,帮助用户逐步解决问题。 - 参考提供的引用内容。 提供的引用包括几个C++代码片段,展示了线性筛法(也称为埃拉托斯特尼法或优化的法)的实现。引用[1]、[3]和[4]都提供了代码示例,其中引用[1]和[3]是相同的代码,引用[4]是另一个版本。引用[2]解释了线性筛法的原理。 关键点: - 线性筛法用于生成素数表。 - 复杂度是$O(n \log \log n)$,优于朴素方法。 - 算法涉及初始化一个布尔数组标记是否为素数,然后迭代标记合数。 我的回答结构: 1. **介绍线性筛法**:简要解释什么是线性筛法及其优势。 2. **算法原理**:基于引用[2],解释原理。 3. **C++实现**:提供一个完整的C++代码示例,参考引用中的代码。 4. **代码解释**:逐步解释代码的关键部分。 5. **相关问题**:生成几个相关问题。 使用中文回答。 生成相关问题: - 基于主题,如性能优化、应用场景等。 - 例如:如何优化线性筛法?复杂度分析?实际应用? 引用标识: - 在解释原理或代码时,自然地添加引用,如[^2]。 数学表达式: - 例如,复杂度可以写成$O(n \log \log n)$。 - 在行内使用$...$,独立公式用$$...$$$$。 完整C++代码: - 参考引用[1]和[4],提供一个标准实现。 - 确保代码正确:初始化数组,迭代标记合数,存储素数。 最终回答大纲: 1. 介绍线性筛法。 2. 解释算法原理,引用[^2]。 3. 提供C++代码。 4. 解释代码步骤。 5. 生成相关问题。</think>### C++ 线性筛法实现素数生成 线性筛法(也称为埃拉托斯特尼法)是一种高效的算法,用于生成指定范围内的所有素数。其核心思想是通过标记合数来选素数,时间复杂度为$O(n \log \log n)$,优于朴素的$O(n^2)$方法[^2]。以下我将逐步解释原理,并提供完整的C++实现。 #### 算法原理 线性筛法基于一个关键观察:每个合数都可以表示为最小素因子的倍数。具体步骤: 1. 初始化一个布尔数组 `vis`,标记所有数初始为素数(`true` 表示素数)。 2. 从最小素数(2)开始迭代: - 如果当前数 `i` 是素数(`vis[i] == true`),将其存入素数数组 `prime`。 - 然后,标记 `i` 的所有倍数(`j = i*i, i*(i+1), ...`)为非素数(`vis[j] = false`)。这确保每个合数只被标记一次,优化了效率[^2]。 3. 最终,`prime` 数组存储所有素数。 数学上,算法复杂度为$O(n \log \log n)$,当 $n = 10^6$ 时,计算量约为 $7.7 \times 10^5$,非常高效[^3]。 #### C++ 代码实现 以下是一个完整的C++程序,实现线性筛法生成素数表(以生成100以内素数为例)。代码基于引用[1]和[4]优化,确保正确性和可读性。 ```cpp #include <iostream> #include <cstring> // 用于memset函数 using namespace std; const int MAX_N = 100; // 定义最大范围,例如100 int main() { bool vis[MAX_N + 1]; // 标记数组:vis[i] = true 表示i是素数 int prime[MAX_N + 1]; // 存储素数的数组 int count = 0; // 素数计数器 // 初始化:所有数默认为素数 memset(vis, true, sizeof(vis)); vis[0] = vis[1] = false; // 0和1不是素数 // 线性筛法核心 for (int i = 2; i <= MAX_N; i++) { if (vis[i]) { // i是素数 prime[count++] = i; // 存入素数数组 // 标记i的倍数(从i*i开始,避免重复标记) for (int j = i * i; j <= MAX_N; j += i) { vis[j] = false; // 标记为非素数 } } } // 输出素数表 cout << "100以内的素数:" << endl; for (int i = 0; i < count; i++) { cout << prime[i] << " "; } cout << endl; return 0; } ``` #### 代码解释 1. **初始化**: - `vis` 数组初始化为 `true`,表示所有数都是素数候选。 - `vis[0]` 和 `vis[1]` 显式设为 `false`,因为0和1不是素数。 2. **法过程**: - 外层循环从2迭代到 `MAX_N`。 - 如果 `vis[i]` 为 `true`,则 `i` 是素数,存入 `prime` 数组。 - 内层循环从 `i*i` 开始标记 `i` 的倍数(如 `j = i*i, i*(i+1), ...`),优化了效率(避免重复标记较小倍数)。 3. **输出结果**: - 循环结束后,`prime` 数组包含所有素数,`count` 是素数个数。 - 程序输出100以内的素数列表:2, 3, 5, ..., 97。 #### 使用说明 - **修改范围**:调整 `const int MAX_N = 100;` 可生成不同范围内的素数(如 `MAX_N = 1000000` 生成百万以内素数)。 - **性能**:该算法在 $n = 10^6$ 时运行迅速,适用于快速生成素数表[^3]。 - **优化提示**:从 `i*i` 开始标记(而非 `i+i`),减少了冗余操作,引用[4]展示了类似优化。 如果您需要扩展(如处理更大范围或优化内存),请提供具体需求,我会进一步解释。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值