题目
判断一个整数是否是回文数。回文数是指正序(从左向右)和倒序(从右向左)读都是一样的整数。
示例 1:
输入: 121
输出: true
示例 2:
输入: -121
输出: false
解释: 从左向右读, 为 -121 。 从右向左读, 为 121- 。因此它不是一个回文数。
示例 3:
输入: 10
输出: false
解释: 从右向左读, 为 01 。因此它不是一个回文数。
进阶:
你能不将整数转为字符串来解决这个问题吗?
题解
解题思路一
看到这个题目第一个想法就是将数字转换为字符串,然后挨个检查字符串的每个字符判断字符串是否为回文数。但是该方法需要额外的非常量空间来存储转换而来的字符串。
代码实现
public class IsPalindrome {
public boolean isPalindrome(int x) {
String val = String.valueOf(x);
int i=0, j=val.length()-1;
while (i<j){
if (val.charAt(i)!=val.charAt(j)) {
return false;
}
++i;
--j;
}
return true;
}
}
复杂度分析
- 时间复杂度:O(n)
- 空间复杂度:O(n)
解题思路二
如果不将数字转换为字符串,第二个想法就是反转数字本身,然后将反转后的数字与原始数字进行比较,如果相同,则为回文数,否则不是。
但是,反转数字时需要考虑溢出问题,如果反转后的数字超过了int.MAX,则会导致整数溢出问题。此时如果我们之反转数字的一半呢(后半部分)?如果该数字是回文数,则后半部分反转后应该与前半部分是一致的。比如 123321,后半部分进行反转后是123,前半部分也是123,因此得知123321是回文数。因此接下来的问题是如果反转数字呢?
首先,考虑一些特殊情况,所有负数不可能为回文数,例如-121不是回文,因为-不等于最后一位1,因此可以对所有负数返回false。
其次,除了0以外,所有个位数是0的数字不可能是回文,因为最高位不可能是0。所以对所有大于0且各位是0的数字返回false。
最后,对一般情况下的数据后半部分进行反转。例如,对于1221,执行1221%10=1得到最后一位数字1,执行1221/10=122,122%10=2得到倒数第二位数字2。同时如果我们将最后一位数字1*10=10,再加上倒数第二位数字,10+2=12,就得到了我们想要的反转后的后半部分数字。同理可以得到更多位数的反转数字。
何时才算反转一半了呢?由于整个过程我们是不断的将原始数字除以10,然后将反转后的数字乘以10,所以,当原始数字小于或等于反转后的数字时,就意味着我们已经反转了一半的数字了。
代码实现
public class IsPalindrome {
public boolean isPalindrome(int x) {
// 处理特殊情况
// 当x<0是不满足
// 如果数字的最后一位是0,为了满足回文数,则数字的第一位也应该是0,只有0满足
if (x<0 || (x%10==0 && x!=0)) {
return false;
}
int reverteNumber = 0;
// 当原始数字小于翻转后的数字时,表示已经翻转了一半
while (x > reverteNumber) {
reverteNumber = reverteNumber * 10 + x % 10;
x = x / 10;
}
return x == reverteNumber || x == reverteNumber / 10;
}
}
复杂度分析
- 时间复杂度:O(logn),对于每次迭代,都将原始数据除以10
- 空间复杂度:O(1)