LeetCode——回文数

这篇博客主要介绍了如何解决LeetCode上的回文数问题。提供了两种解题思路,一种是将数字转换为字符串并检查是否为回文,另一种是通过数学方法反转数字的一半来判断。在第二种方法中,详细阐述了处理负数、个位数为0的情况以及如何反转数字的一半,确保不会出现溢出,并给出了复杂度分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目

判断一个整数是否是回文数。回文数是指正序(从左向右)和倒序(从右向左)读都是一样的整数。

示例 1:

输入: 121

输出: true

示例 2:

输入: -121

输出: false

解释: 从左向右读, 为 -121 。 从右向左读, 为 121- 。因此它不是一个回文数。

示例 3:

输入: 10

输出: false

解释: 从右向左读, 为 01 。因此它不是一个回文数。

进阶:

你能不将整数转为字符串来解决这个问题吗?

 

题解

解题思路一

看到这个题目第一个想法就是将数字转换为字符串,然后挨个检查字符串的每个字符判断字符串是否为回文数。但是该方法需要额外的非常量空间来存储转换而来的字符串。

代码实现

public class IsPalindrome {
    public boolean isPalindrome(int x) {
        String val = String.valueOf(x);
        int i=0, j=val.length()-1;
        while (i<j){
            if (val.charAt(i)!=val.charAt(j)) {
                return false;
            }
            ++i;
            --j;
        }
        return true;
    }
}

复杂度分析

  • 时间复杂度:O(n)
  • 空间复杂度:O(n)

 

解题思路二

        如果不将数字转换为字符串,第二个想法就是反转数字本身,然后将反转后的数字与原始数字进行比较,如果相同,则为回文数,否则不是。

        但是,反转数字时需要考虑溢出问题,如果反转后的数字超过了int.MAX,则会导致整数溢出问题。此时如果我们之反转数字的一半呢(后半部分)?如果该数字是回文数,则后半部分反转后应该与前半部分是一致的。比如 123321,后半部分进行反转后是123,前半部分也是123,因此得知123321是回文数。因此接下来的问题是如果反转数字呢?

        首先,考虑一些特殊情况,所有负数不可能为回文数,例如-121不是回文,因为-不等于最后一位1,因此可以对所有负数返回false。

        其次,除了0以外,所有个位数是0的数字不可能是回文,因为最高位不可能是0。所以对所有大于0且各位是0的数字返回false。

        最后,对一般情况下的数据后半部分进行反转。例如,对于1221,执行1221%10=1得到最后一位数字1,执行1221/10=122,122%10=2得到倒数第二位数字2。同时如果我们将最后一位数字1*10=10,再加上倒数第二位数字,10+2=12,就得到了我们想要的反转后的后半部分数字。同理可以得到更多位数的反转数字。

        何时才算反转一半了呢?由于整个过程我们是不断的将原始数字除以10,然后将反转后的数字乘以10,所以,当原始数字小于或等于反转后的数字时,就意味着我们已经反转了一半的数字了。

代码实现

public class IsPalindrome {
    public boolean isPalindrome(int x) {
        // 处理特殊情况
        // 当x<0是不满足
        // 如果数字的最后一位是0,为了满足回文数,则数字的第一位也应该是0,只有0满足
        if (x<0 || (x%10==0 && x!=0)) {
            return false;
        }
        int reverteNumber = 0;
        // 当原始数字小于翻转后的数字时,表示已经翻转了一半
        while (x > reverteNumber) {
            reverteNumber = reverteNumber * 10 + x % 10;
            x = x / 10;
        }
        return x == reverteNumber || x == reverteNumber / 10;
    }
}

复杂度分析

  • 时间复杂度:O(logn),对于每次迭代,都将原始数据除以10
  • 空间复杂度:O(1)

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值