Seeta看AI:从大数据驱动到X数据驱动


点击上方“深度学习大讲堂”可订阅哦!



编者按:我们正在邂逅一场前所未有的人工智能技术革命和应用的井喷,现阶段的人工智能发展至今,其背后是以大数据为驱动的。然而,类比人类智能来看人工智能,AI要想真正自主地理解世界,是需要成长与发育的,需要基于小数据乃至0数据情况下的自主学习能力、从有监督到无监督数据的迁移能力、脏数据情况下的纠错能力、少量数据情况下的增广能力、以及多模态的数据协同能力。中科视拓CTO、中科院计算所研究员山世光博士,将从X数据的角度出发,分享他在视觉智能领域的成果。

文章来源:雷锋网 AI科技评论

山世光,中科院计算所研究员、博导,基金委优青,CCF青年科学奖获得者,现任中科院智能信息处理重点实验室常务副主任,中科视拓创始人、董事长兼CTO。他的研究领域为计算机视觉和机器学习。已在国内外刊物和学术会议上发表论文200余篇,其中CCF A类论文60余篇,论文被谷歌学术引用10000余次。曾应邀担任过ICCV,ACCV,ICPR,FG,ICASSP等国际会议领域主席,现任IEEE TIP, CVIU, PRL, Neurocomputing, FCS等国际学术刊物的编委(AE)。研究成果获2005年度国家科技进步二等奖,2015年度国家自然科学二等奖,CVPR2008 Best Student Poster Award Runner-up奖。

如何看待这次AI热潮?

谷歌AlphaGo与李世石的世纪之战,让人工智能(AI)这个话题再度火爆起来。山世光博士早在20年前就开始做AI领域中的计算机视觉技术研究,在这次GAIR大会分享中,他结合自己过去的科研经历和行业观察,分别从四个不同的角度分析,给出了他对此次AI热潮的一些看法:

从方法论角度看:过去几十年流行的人类专家知识驱动的AI方法论被数据驱动的AI方法论全面取代。这里的数据主要指有监督的大数据。人类智能的产生是不是也完全基于有监督的大数据学习而来,尚不得而知。从这个意义上讲,计算智能和人类智能之间的差异也不得而知。

从学术角度来看:虽然有监督大数据驱动的方法论在某些领域已经构建出了超越人类智能的AI,但基于有监督大数据的深度学习是否构建机器智能时代充分而且必要的基础性方法?个人认为至少是不充分的,我们需要新的方法论。

从算法角度来看:主要得益于两个方法:一是深度学习,二是增强学习。增强学习被大家所熟知主要是因为AlphaGo在围棋上战胜了人类最强的棋手。但实际上增强学习在很多场景下是不能用的,至少目前在视觉和语音处理等任务中尚未得到有效的应用。而深度学习可类比人类学习方法里的归纳学习,却不适合演绎学习。深度学习是否可以广泛应用于推理类任务尚不得而知。

从做计算机视觉的角度来讲:包括智能视频监控、考勤门禁等在内的安防应用,以及医疗读图、基于视觉的汽车辅助驾驶等都是计算机视觉技术落地的方向,大量商业化产品已经雨后春笋般涌上市场。

关于演讲主题中的X表示什么意思,山世光博士在接下来的演讲中给出了X数据的五个含义,分别是:第一,大数据;第二,小数据;第三,脏数据;第四,无监督数据;第五,是增广,通过增广获得更大的数据集。下面的分享实录中会有对各个含义的详细解读。

为什么要做X数据驱动?

山世光博士将深度学习算法、强大算力、大数据比作AI革命背后的“三驾马车”,而这“三驾马车“背后的现实问题是金钱投资,需要非常厉害的牛人做深度学习算法、搭建更加强大的计算力平台以及收集更多的数据。其中,数据收集和标注的成本日趋昂贵,所以我们希望在这方面看看能不能做点什么。

关于SeetaVision视觉技术

人脸识别技术:SeetaVision的多姿态人脸检测技术,是在标准人脸检测评测集FDDB上最好的方法之一。在100个误检情况下,SeetaVision的检测率达到了92%,此外还研发了检测加速技术,从而可以在嵌入式设备上实现实时的多姿态人脸检测。第二个人脸核心技术是面部关键特征点的定位,SeetaVision实现了81个关键特征点的超实时检测与跟踪。SeetaVision人脸识别技术的具体应用包括人证一致性验证、员工考勤与打卡、黑白名单目标人监测等。

手势识别:SeetaVision可以实现实时的手语翻译,就像语音识别一样,把1000常用词形成的手语句子翻译成为自然语言文本。基于此,视拓目前已经和美的合作,将其应用于智能家居中。

情感计算:SeetaVision的基本表情识别率超过85%,基于普通摄像头的心率估计的准确率也非常接近医疗设备的测量结果。

视频结构化:面向智能视频监控类应用,SeetaVision实现了嵌入式设备上的实时人车跟踪,准确度超过85%。

无人机视觉:针对无人机地面目标检测任务,SeetaVision实现了高清视频中地面车辆等目标的实时检测、分类与跟踪。

山世光博士还表示,中科视拓的终极目标是让AI知人知面看世界,给每个AI装上智慧的眼睛,让它看清在跟谁交互,周围环境如何,以及正在发生什么事情。而面对目前市场上已有多家做人脸识别等视觉技术的创业公司,如何才能在竞争中脱颖而出,山世光博士表示,将SeetaVision的商业模式定位为“开源赋能”,走差异化竞争路线,重点关注与行业客户之间的深度合作。

在大会分享的最后,山世光博士对AI未来发展需要注意哪些问题做了一些总结,他认为:

其一,鲁棒性可能是AI和视觉智能一个最致命的问题。其二,AI的成长需要多模态协同,不能单靠视觉智能或语音智能等。其三,如何基于小数据甚至是零数据准确完成各类视觉任务,还需要大量的深入研究。

以下是山世光博士在CCF-GAIR 2017上分享的报告:

我今天报告的题目是《X数据驱动的Seeta平台与技术》,可能大家都在想X是什么,这里我们暂时认为X就是一个问号。在接下来的报告中,我会从X数据入手,来重点介绍一下我们所做的工作。

其实我们大家都非常深切的体会到,我们正在邂逅一场前所未有的人工智能技术革命和应用的井喷。在这样的一个状态下,它的背后是有“三驾马车”或者“三个引擎”,就是深度学习算法、强大算力、以及大数据,这些因素的共同作用才产生了这一轮新的AI热潮。

我这次报告的题目为什么叫“X数据驱动”,主要是从数据角度出发,看对AI产业能做什么事情。

这一轮人工智能的热潮,从方法论的角度来讲,主要是源自AI研究范式的变迁,即从人类专家知识驱动的方法论到数据驱动的方法论的变迁。我们指的数据,其实是特指有监督的大数据:一方面是数据量必须足够大,另一方面这些数据还必须是带有内容标签的。人类智能的本质同现在的计算智能之间的差异,在目前而言还是不得而知。因此我们非常有必要从学术角度来探讨,数据驱动或者有监督的大数据驱动这样一种方法论,是否会是我们构建整个机器智能时代的基础设施。

当然,在目前这种有监督大数据驱动的方法论条件下,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值