基于R语言的现代贝叶斯统计学方法(贝叶斯参数估计、贝叶斯回归、贝叶斯计算);贝叶斯思维+吉布斯采样+Metropolis算法

贝叶斯统计学是一门基本思想与传统基于频率思想的统计学完全不同的统计学方法;它以其灵活性和先进性在现代的统计学中占据着重要的地位。

第一章 贝叶斯统计学的思想与概念

1.信念函数与概率

2.事件划分与贝叶斯法则

3.稀少事件的概率估计

4.可交换性

5.预测模型的构建

第二章 单参数模型

1.二项式模型与置信域

2.泊松模型与后验分布

3.指数族模型与共轭先验

第三章 蒙特卡罗逼近

1.蒙特卡罗方法

2.任意函数的后验推断

3.预测分布采样

4.后验模型检验

第四章 正态模型

1.均值与条件方差的推断

2.基于数学期望的先验

3.非正态分布的正态模型

第五章 吉布斯采样

1.半共轭先验分布

2.离散近似

3.条件分布中的采样

4.吉布斯采样算法及其性质

5.MCMC方法

第六章 多元正态分布与组比较

1.多元正态分布的密度

2.均值的半共轭先验

3.逆-Wishart分布

4.缺失数据与贝叶斯插补

5.组间比较

6.分层模型的均值与方差

第七章 线性回归

1.回归的本质与最小二乘法

2.回归的贝叶斯估计

3.模型的贝叶斯比较

4.吉布斯采样与模型平均

5.指数模型比较与选择

6.Python的Copula相关包介绍

第八章 非共轭先验与M-H算法

1.广义线性模型

2.泊松模型Metropolis算法

3.Metropolis-Hastings算法

4.M-H算法与吉布斯采样的组合

第九章 线性与广义线性混合效应模型

1.多层回归模型

2.全条件分布

3.广义线性混合效应模型

第十章 有序数据的隐变量模型

1.有序Probit回归

2.秩的似然

3.高斯Copula模型


★ 点 击 下 方 关 注,获取海量教程和资源!

↓↓↓

复数域的贝叶斯参数估计是统计建模中的高级技术,尤其是在需要处理相位和幅度信息的场景。传统的MCMC方法主要用于实数参数,但当模型参数为复数时,就需要特别设计的MCMC算法来适应复数参数空间的特性。《复值贝叶斯参数估计:马尔可夫链蒙特卡洛新算法》一文详细探讨了这一挑战并提出了新的解决方案。 参考资源链接:[复值贝叶斯参数估计:马尔可夫链蒙特卡洛新算法](https://wenku.csdn.net/doc/3jsd7qj3pw?spm=1055.2569.3001.10343) 首先,Metropolis-Hastings采样作为一种灵活的MCMC技术,允许我们根据给定的概率分布随机地在参数空间中探索。在复数域中,我们不仅需要考虑参数的幅度,还需要考虑参数的相位。Metropolis-Hastings采样可以通过调整接受率,来确保算法能在复数空间中有效地进行探索。 接下来,差分演化算法作为全局优化算法,特别适用于高维且复杂的参数空间探索。在复数域中,差分演化算法可以通过特定设计的变异策略和交叉操作来产生新的复数参数,进一步丰富采样分布。 为了提高参数估计的准确性,Hermitian协方差矩阵被用来定义复数参数空间中的概率密度函数,它允许我们更好地描述复数参数之间的关系,特别是在信号处理等应用中。 当观测信号不准确或存在噪声时,增强的复杂MCMC算法被引入以提高参数估计的鲁棒性。这些算法通过引入更复杂的后验分布或结合先验信息来优化参数估计过程。 总体来说,结合Metropolis-Hastings采样和差分演化算法的MCMC方法,为复值参数估计提供了一种强大的工具,尤其是在复数域中处理复杂问题时。理论研究和数值模拟进一步验证了这些算法在实数和复数参数估计中的有效性和稳健性。 参考资源链接:[复值贝叶斯参数估计:马尔可夫链蒙特卡洛新算法](https://wenku.csdn.net/doc/3jsd7qj3pw?spm=1055.2569.3001.10343)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值