大语言模型提示工程与应用:前沿提示工程技术探索

前沿提示工程

学习目标

在本课程中,我们将学习尚未形成系统分类的前沿提示工程技术,包含具有潜力的新思路与方法。

相关知识点

  • 前沿提示工程

学习内容

1 前沿提示工程

1.1 主动式提示

传统思维链(CoT)方法依赖固定的人工标注示例集,但其可能并非最优样本。主动式提示方法可以通过动态选择样本优化LLM任务表现:

1.使用初始CoT示例集(或零样本)查询LLM

2.对训练问题生成k组可能答案

3.基于答案分歧度计算不确定度指标

4.筛选最不确定的问题进行人工标注

5.将新标注样本加入推理流程

典型应用

  • 数学推理任务:在GSM8K数据集上错误率降低23%

  • 事实核查:通过聚焦争议性问题提升验证准确率

  • 需人工标注资源的场景:可减少50%以上标注量

实现示例

def calculate_uncertainty(answers):
    from scipy.stats import entropy
    prob_dist = get_answer_distribution(answers) 
    return entropy(prob_dist, base=2)

1.2 定向激励提示

该技术可以通过策略语言模型生成定向提示信号,引导LLM生成更精准摘要:

  • 训练可调策略LM生成激励信号
  • 采用强化学习优化提示生成
  • 小规模策略LM即可有效引导黑盒LLM

技术架构

1.策略模型(1-3B参数):

输入:原始问题+领域知识

输出:结构化提示词(如"请重点比较<关键实体>")

训练:使用PPO算法优化提示生成

2.主LLM(175B+参数):
接收策略模型生成的提示进行推理

3.反馈机制:
通过ROUGE-L/BLEU等指标进行强化学习

  • 推理阶段:形成/追踪/调整行动计划
  • 动作阶段:对接知识库等外部系统
  • 异常处理:动态应对执行异常

性能优势

  • 摘要任务:在CNN/DM数据集上ROUGE-1提升8.2%

  • 长文本生成:内容连贯性提高35%

  • 计算效率:相比端到端微节省90%算力

典型提示结构

[策略模型生成]
请从<专利文本>中提取技术创新的三个核心要素:
1. 突破性方法
2. 实验验证 
3. 商业价值

[主LLM输出]
...

1.3 ReAct交互框架

这是一个交错生成推理轨迹与任务动作的框架:

  • 推理阶段:形成/追踪/调整行动计划
  • 动作阶段:对接知识库等外部系统
  • 异常处理:动态应对执行异常

工作流程

graph TD
    A[用户提问] --> B{推理分析}
    B -->|生成计划| C[调用API获取天气数据]
    B -->|不确定因素| D[查询知识图谱]
    C --> E[整合数据]
    D --> E
    E --> F[生成最终响应]

关键创新

1.动态规划:每步生成形如"Thought:… Action:…"的标记

2.工具集成:

  • 知识检索:WolframAlpha/Google Search

  • 计算引擎:Python interpreter

3.异常处理:

try:
    response = call_api(question)
except:
    print("Action: 请求失败,将尝试替代方案")

实测效果

  • HotpotQA多跳问答:准确率从58%→72%

  • 实时数据查询:响应速度提升4倍

该框架可以显著提升响应的事实性与可靠性

1.4 多模态思维链

该方法突破传统文本模态局限,提出两阶段多模态CoT:

1.依据生成:融合视觉与文本信息生成推理依据

2.答案推断:基于多模态依据推导最终答案

其10亿参数模型在ScienceQA基准上超越GPT-3.5

两阶段架构

阶段输入处理输出
依据生成图片+文本CLIP编码→跨模态注意力推理依据
答案推断依据文本GPT-3.5推理最终答案

模型配置

vision_encoder: ViT-L/14
text_encoder: RoBERTa-large
fusion_module: 256-dim cross-attention
reasoner: GPT-3.5-turbo

性能对比

模型准确率参数量
GPT-478.2%1T
MMCoT82.3%1B
Human88.7%-
1.5 图结构提示

该方法面向图数据的提示框架GraphPrompt,显著提升下游任务表现。

核心技术

1.图编码:

  • 节点特征:GAT/GCN编码

  • 边特征:图注意力机制

2.提示模板


基于<图结构>和<节点属性>:
- 关键路径:{path}
- 中心节点:{node}
请回答:...

3.应用场景

  • 分子性质预测(ChemBERT+GraphPrompt)

  • 社交网络分析

  • 推荐系统

性能提升

任务类型传统方法GraphPrompt
链接预测0.72 AUC0.83 AUC
节点分类91% F194% F1
图分类86% Acc89% Acc

技术对比矩阵

特性主动式提示DSPReActMMCoTGraphPrompt
是否需要标注
支持模态文本文本文本多模态图数据
典型加速比1.5x3x2x-1.8x
适用模型规模>10BAny>100B>1B>100M

# 大语言模型提示工程与应用
1. 提示工程入门指南
2. 提示词基础使用方式
3. 大语言模型进阶提示工程技术
4. LLMs文本生成与数据标注实践:情感分析与葡萄酒品鉴
5. ChatGPT提示工程技术指南
6. 大语言模型对抗性提示安全防御指南
7. 提示工程:提升模型准确性与减少偏见的方法
8. 前沿提示工程技术探索

### 大语言模型 Prompt Engineering 的调研技术资料 Prompt Engineering 是近年来随着大语言模型的发展而兴起的一个重要领域,它专注于如何设计和优化输入给大语言模型提示语句,从而获得更高质量的输出。以下是针对这一主题的技术资料和文献总结: #### 1. **Prompt 工程的核心概念** Prompt 工程涉及多个方面,包括但不限于提示的设计原则、分类方法以及具体实现技巧。一篇重要的综述性论文系统地梳理了当前提示技术的研究进展,并提供了清晰的术语定义和技术介绍[^2]。这些内容对于理解 Prompt 工程的基本框架具有重要意义。 #### 2. **开源项目中的实践案例** 除了学术研究外,在实际应用层面也有许多值得借鉴的例子。例如,某项开源项目展示了基于 LLaMA 和 Baichuan 等预训练模型开发科技文献问答系统的全过程[^1]。虽然其主要目标并非专门探讨 Prompt 工程本身,但从其实现细节中仍然能够提取到不少有关于高效利用提示策略的经验教训。 #### 3. **多模态视角下的扩展方向** 值得注意的是,随着人工智能技术的进步,特别是多模态处理能力不断增强的情况下,传统的纯文本型 Prompts 正逐渐向更加复杂的形式演变。某些最新研究表明,“CLIP + 其他模型”的组合方式已经成为解决跨模态任务的标准做法之一[^3]。这意味着未来关于 Prompt Design 的讨论可能会更多涉及到视觉、音频等多种感官信息融合的问题上。 #### 4. **初学者入门指南** 对于刚刚接触此领域的人员来说,可以从最基础的知识学起。比如当面对无标注数据集时,则可考虑采用聚类分析之类的非监督学习算法作为解决方案[^4];而对于已经具备一定经验的学习者而言,则可以通过阅读上述提到过的高水平期刊文章或者参相关社区交流活动等方式深入探索高级话题。 ```python # 示例代码:简单的 K-Means 聚类算法应用于未标记数据集 from sklearn.cluster import KMeans import numpy as np data = np.random.rand(100, 2) # 假设有二维随机分布的数据点 kmeans = KMeans(n_clusters=5).fit(data) print(kmeans.labels_) # 输出每个样本所属簇类别编号 ``` 以上即是对您所提问题的部分解答及相关背景材料整理汇总,请继续关注该领域前沿动态以便获取更多信息更新!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值