想要转行算法工程师?这里有一些建议和经验分享,助你成功转型!

最近互联网校招的开奖如火如荼地进行,算法这个岗位应该是这几年来大家挤破头想进的职位之一。原因大家都懂:像美团、字节跳动、拼多多等公司开出的薪资都比较高,很多早一两年先进来的同学,个个都喊自己就是“蝙蝠”,被倒挂得一塌糊涂。

不管是不是计算机专业的,大家拼命地往这个方向卷。我在算法方向刚好也做了5年多,作为一个曾经也是毕业转型的选手,想跟大家聊聊我的思考。

算法工程师具有什么样的素养和特征

在你下定决心要做算法之前,先要问自己,是不是被工资盲目吸引进来的。然后,我说下我见过的优秀算法工程师中,他们普遍具备的一些素养和特征。

静得下心。算法工程师本质上属于程序员的一个细分职位。程序员需要长时间对着电脑,一天可能需要在办公室坐个十几个小时,来通过写代码解决产品经理和用户的需求。

如果你性格喜欢和人打交道,非常喜欢热闹,安静地坐下来解决问题如果对你来说,是一种能量上的消耗,那么你可能不太适合做个程序员。

注重细节和数据。算法和后台开发的技能树非常不一样(两者的详细比较,我以后再写)。后台开发的同学,往往在高并发、高性能等架构方面非常擅长,而算法同学则需要擅长抠细节。

搞算法的同学一定有体验过被脏数据弄到抓狂的时候。这种脏数据,它不会导致程序运行出现问题。虽然整个系统运行地非常稳健,但是,业务关心的核心指标一直在阴阴地跌。这个时候,排查问题是很折磨人的。

有次我在做个性化推荐项目,发现点击率一直在跌,开始的时候查了两天,我把所有关键链路的数据一项项排查,以为是某个打分后台逻辑出了问题,结果查了一圈,根本查不出业务的一点漏洞。

于是,更加深入地,把每个特征处理的原始输入、输出全打印出来,才发现,是某个关键特征,它的数据分布发生了变化,从而导致排序打分出现一点偏差,而就是这一点点的偏差,后续被无限放大,最终导致效果改变很多。

强大的动手能力。我和一些还在读大学的同学们聊天的时候问,你们转算法的原因是什么?有些同学原话如下:

我写代码不行。听以前的学长说,可以去搞算法,因为搞算法只要数学好一点就行。

这个说法就跟多年前,有人劝那些计算机专业中不想写代码的同学:“你可以去当产品经理” 一样,逻辑上非常说不通。

搞算法的同学,数学好是优势,但基础还是要能写代码。现在顶会上,像阿里、腾讯等公司都把他们的想法、解决方案都写在论文中了,不过如果只是看paper, 完全无法在自己的业务场景下复现和改造的话,那等于是纸上谈兵。

另外,有时候你想魔改某个算法架构或者细节,但是压根就不知道如何写,你自己都会感到尴尬吧。

持续学习的能力。前面讲过,算法和后台开发等技能树非常不同。经历过高并发,需要高性能支持的,比如说春节晚会抢红包、双十一购物节等场景下的后台开发工程师,他们从中学到的架构经验是可以复用,可以迁移到另外这种高并发的场景。但是,算法同学不一样,你今天做的项目用到的知识点,和明天另一个项目需要的可能相差非常大。

这实际上驱使算法同学要不断学习。每年各种顶会(KDD、ACM等)的高引用论文要学习,业界真实落地方案要去探究,还加上各种工具要迭代更新会使用。前些年可能要会用Hadoop、Spark处理大数据,现在要会用Flink去处理实时数据流。

如果没有强大的持续学习的能力,被淘汰几乎是必然的。毕竟,还有那么多年轻同学要进来这个岗位和你一起卷,当你35岁,精力肯定不如那群小伙子们。何况,人家要的工资低,还能加班,所以你的竞争优势在哪呢?

算法工程师的职业发展

如果你确定要参与到这项大型内卷游戏,我以BAT大厂来举例看看。

以阿里职级体系来看,假设你硕士毕业年龄是25,一般起步刚开始是P4 --- 初级工程师。当然,那些面试拿到更好结果的同学,有些是P5,甚至是P6(很少)、P7(非常少)。

经过1年到2年半左右,正常情况下你应该到P6了,这个时候你对业务整体比较熟悉,能够熟练完成上级给你指派的任务。在阿里,从P6到P7是一道坎,一年一次的晋升机会本身有限,而且能不能升,一方面和leader认不认可你的技术能力有关,另一方面和业务发展也有一定关系。

我有一些同学在阿里,听他们讲,有时候往往由于业务变化迅速,可能刚做半年的项目,整个被砍掉后迁移到其他组去,要是刚好碰上自己要升P7的话,希望就变得很渺茫了。

从P7往P8,就更难了。一个组里面可能P8就只有一到两个,他们往往是项目的负责人等等。一般而言,高资历的P7、P8 如果跳槽去其他中小公司的话,基本上能做一个相对有话语权的负责人了。

总结一下,从25岁P4打怪开始,大概27到P6,运气好的话,28到P7。基本到30岁左右,P7的可能性是最大的,P8既看自己,也要看业务。

这份完整版的AI算法工程师学习和面试资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

AI算法工程师学习路线

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值