显卡nvidia的CUDA和cuDNN的安装

显卡版本,和nvidia下载的 CUDA版本和CUDNN的关系

1. 显卡版本

nvidia-smi

硬件环境:显卡版本 4090 + NVIDIA-SMI-555.85

我的驱动是510.85.02,驱动附带cuda=12.5

 2. nvidia下载的cuda版本 

nvcc -V

我下载的是cuda12.5

cuda在安装版本过程中需要确定安装版本!!!
在安装之前呢,我们需要确定三件事
第一:查看显卡支持的最高CUDA的版本,以便下载对应的CUDA安装包。由于我电脑windows版本可以支持到12.5的版本,可以选择12.5以下的版本。
第二:查看对应CUDA对应的VS版本,以便下载并安装对应的VS版本(vs需要先安装)(一般用VS2019/vs2022即可)CUDA12.5适配VS2022

确定CUDA版本支持的VS版本

查询官方安装文档,这里给出文档地址:https://docs.nvidia.com/cuda/archive/11.6.0/cuda-installation-guide-microsoft-windows/index.html

下载vs2022

下载地址https://visualstudio.microsoft.com/zh-hans/?rr=https://www.microsoft.com/zh-cn/

安装Microsoft Visual C++ 2022

下载地址:最新支持的Visual C++ 可再发行程序包下载 | Microsoft Docs

 Visual Studio 2019 Community 社区版(免费版)
简体中文版下载地址:Thank You for Downloading Visual Studio Community Edition

注意,需要选择C++开发模块,其它根据自己的需求安装就好了~

第三:确定CUDA版本对应的cuDNN版本,因为在cudnn的下载页面会列出每个版本对应的cuda版本,11.x以上对应的范围很宽

在NVIDIA官方网站即可下载,地址为:https://developer.nvidia.com/rdp/cudnn-archive

3. 下载CUDA toolkit 和cuDNN

windows10 和win11安装 CUDA ,首先需要下载两个安装包

CUDA toolkit(toolkit就是指工具包)
cuDNN 用于配置深度学习使用

官方教程

CUDA:CUDA Installation Guide for Microsoft Windows

Overview — NVIDIA cuDNN v9.2.0 documentationcuDNN:Overview — NVIDIA cuDNN v9.2.0 documentation

 CUDA toolkit Download

CUDA Toolkit Archive | NVIDIA Developer

由于我电脑windows版本可以支持12.5的版本,一般最好不要安装最新的。

1. 安装cuda时,第一次会让设置临时解压目录,第二次会让设置安装目录

临时解压路径,建议默认即可,也可以自定义。

安装结束后,临时解压文件夹会自动删除;

安装目录,建议默认即可;

注意:临时解压目录不要和cuda的安装路径设置一样,否则安装结束,会找不到安装目录!此处我将临时安装目录设置到非系统盘路径,但是注意要选择空文件夹,否则会报错。

选择自定义安装

安装完成后,配置cuda的环境变量;

命令行中,测试是否安装成功;

双击“exe文件”,选择下载路径(推荐默认路径)
 

2. 自定义安装,精简版本是下载好所有组件,并且会覆盖原有驱动,所以在这里推荐自定义下载。

3. 如果是第一次安装,尽量全选;如果是第n次安装,尽量只选择第一个CUDA,不然会出现错误。

如果电脑上没有安装vs,需要把CUDA里面的Visual Studio Integration取消勾选,否则会安装不成功。但最好是一般都需要安装完vs再安装CUDA

选择默认位置:

在这里我遇到了一个问题:

在安装过程中说Nsight Compute 安装失败,所以先跳过这个模型,不选它,准备后续再安装这个模块。本来想参照CUDA安装失败-Nsight compute安装失败-如何测试CUDA是否安装成功?Reason: VS** was not found-CSDN博客

后续查找资料说是因为VS和cuda版本不匹配导致的,因此我又下载了VS2022,重新进行了CUDA的安装,这次直接成功!

4.查看环境变量:

设置/查看高级系统设置/环境变量/

5. 验证CUDA是否安装成功:

运行cmd,输入nvcc --version 即可查看版本号;set cuda,可以查看 CUDA 设置的环境变量。

cuDNN配置

1. cuDNN地址如下,不过要注意的是,我们需要注册一个账号,才可以进入到下载界面。大家可以放心注册的。找到对应CUDA版本的cuDNN,下载压缩包

cuDNN Download | NVIDIA Developer

2. cuDNN叫配置更为准确,我们先把下载的 cuDNN 解压缩,会得到下面的文件:

解压后,有三个文件夹,把三个文件夹拷贝到cuda的安装目录下。

3. CUDA 的安装路径在前面截图中有,或者打开电脑的环境变量查看,默认的安装路径如下:

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.5

4. 分别把文件夹的内容复制到对应文件夹中去。拷贝时看到,CUDA 的安装目录中,有和 cuDNN 解压缩后的同名文件夹,这里注意,不需要担心,直接复制即可。cuDNN 解压缩后的同名文件夹中的配置文件会添加到 CUDA安装目录中的同名文件夹中。

需要几次允许管理员操作。

5. cuDNN 其实是 CUDA 的一个补丁,专为深度学习运算进行优化的。然后再添加环境变量

往系统环境变量中的 path 添加如下路径(根据自己的路径进行修改):

设置/查看高级系统设置/环境变量/系统变量/Path/编辑/新建

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.5\bin
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.5\include
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.5\lib
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.5\libnvvp

6. 验证配置是否成功
配置完成后,我们可以验证是否配置成功,主要使用CUDA内置的deviceQuery.exe 和 bandwidthTest.exe:

启动cmd,cd到安装目录下的 …\extras\demo_suite,然后分别执行bandwidthTest.exe和deviceQuery.exe(进到目录后需要直接输“bandwidthTest.exe”和“deviceQuery.exe”),

cd C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.5
cd .\extras\demo_suite
.\bandwidthTest.exe
.\deviceQuery.exe

最后,CUDA是一个十分折磨人的程序,但是只要版本对应就比较好安装,最主要还是要看VS/CUDA/cuDNN以及电脑本身显卡版本的匹配。祝大家安装一次到位!!

### NVIDIA 显卡驱动、CUDA cuDNN 的兼容版本对应关系 为了确保 NVIDIA 显卡能够高效运行基于 CUDA 的应用程序以及深度学习框架(如 TensorFlow 或 PyTorch),需要正确配置显卡驱动、CUDA 工具包 cuDNN 库之间的版本匹配。以下是关于这些组件之间兼容性的详细说明: #### 1. 显卡驱动与 CUDA 的兼容性 显卡驱动程序的版本决定了可以使用的最高 CUDA 版本。例如,如果要使用 CUDA 11.8,则显卡驱动版本至少需要达到 515.43.04;而 CUDA 12.x 要求驱动版本不低于 535.54.03[^2]。 可以通过以下命令检查当前系统的显卡驱动状态及其支持的最大 CUDA 版本: ```bash nvidia-smi ``` 此命令会返回有关 GPU 使用情况的信息,在输出窗口的右上角可以看到 `CUDA Version` 字样,标明该驱动所支持的最高 CUDA 版本[^4]。 #### 2. CUDAcuDNN 的依赖关系 cuDNN 是一种针对深度神经网络优化的库,它通常作为附加组件集成到 CUDA 中工作。不同版本的 cuDNN 可能仅适用于特定范围内的 CUDA 版本。例如,cuDNN v8.9 支持 CUDA 11.7 至 CUDA 12.1[^5]。因此,在选择 cuDNN 版本时,务必确认其是否能在目标 CUDA 版本下正常运作。 #### 3. 综合考虑各软件栈间的相互作用 除了上述两点外,还需要注意其他机器学习框架(比如 TensorFlow 或 PyTorch)对于底层硬件环境的具体需求。某些框架可能只适配于指定区间内的 CUDA/cuDNN 组合。例如,PyTorch 2.0 推荐搭配 CUDA 11.8 cuDNN 8.6 来获得最佳性能表现[^3]。 综上所述,合理规划整个技术堆栈中的各个组成部分至关重要——从基础层面上看就是保证操作系统上的 NVIDIA 驱动更新至适当水平以便加载期望版本号区段里的 CUDA runtime API 实现方案进而再依据实际项目应用场景选取恰当规格参数设定下的 cuDNN 加速引擎实例化对象完成初始化过程从而最终达成预期效果目的。 ```python import torch print(torch.cuda.is_available()) # 检查是否有可用的GPU设备 print(torch.version.cuda) # 查看当前PyTorch绑定的CUDA版本 print(torch.backends.cudnn.version()) # 获取已加载的cuDNN版本信息 ``` 以上代码片段可用于验证 Python 环境中安装的相关模块是否正确定位到了所需的 CUDA cuDNN 设置。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

TracyGC

创作不易,需要花花~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值