这个专题主要介绍的是几种典型的CNN架构。
AlexNet
输入:227*227*3的图像矩阵。
第一层(CONV1):96个步长为4,大小为11*11的卷积核,经过第一层后的输出大小为55*55*96,参数个数为11*11*3*96。
第二层(POOL1):3*3的卷积核,步长为2,输出大小为27*27*96,池化层没有参数。
ZFNet
和AlexNet有相同的层数,相同的基本结构,优化了超参。如步长、卷积核数量等超参做了一些改进,降低了错误率,但是基本的思想是一致的。
VGGNet
VGG的特点是:小卷积核,深网络。
使用小卷积核的原因:保证网络精度的情况下,减少参数,两个3x3的堆叠卷基层的有限感受野是5x5;三个3x3的堆叠卷基层的感受野是7x7,原因如下:
GoogLeNet
特点:深层的网络、计算有效性、没有全连接层、参数少