通俗易懂的精度Precision和召回率Recall解释,看这篇就行,5分钟记住。

本文详细介绍了机器学习和图像识别中常用的精度(Precision)和召回率(Recall)概念,通过TP、TN、FP、FN的区分以及混淆矩阵的解释,用通俗例子阐述了这两个指标的计算方法和含义。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、背景

因为我是做机器人方向的,不可避免的涉及到视觉方向的内容,还有审稿的时候也会看到识别相关的内容,其中衡量识别效果的指标包括精度Precision召回率Recall,虽然很好理解,但每次都记不住,趁这次机会详细纪录一下,并举一个通熟易懂的例子加深印象。

二、基础知识及解释

1.术语TP、TN 、FP 、FN

在机器学习和图像识别领域,我们经常会听到检测结果为"真阳性"、"假阴性"等说法。

“真”、"假"说的是检查结果的对错。”真“意味着检测结果是正确的,"假"意味着检测结果是错误的。
“阳性”、"阴性"说的是此次的检查结果。阳性,意味检测出了预定的目标。阴性,意味着没查出预定的目标。
在这里插入图片描述

2.混淆矩阵

混淆矩阵是机器学习领域中用于精度评价的一种标准格式,也被称为误差矩阵。混淆矩阵的每一行代表一个真实的标签,每一列代表一个预测的标签。矩阵的对角线元素表示模型正确分类的实例数,非对角线元素则表示模型错误分类的实例数。

在这里插入图片描述
在给个中文版本的:
在这里插入图片描述

3.精度(precision)

精度(precision),也叫查准率,就是在全部阳性预测中,正确预测结果所占的比例,计算公式为:

Precision=TPTP+FP\begin{aligned} Precision=\frac{TP}{TP+FP} \end{aligned}Precision=TP+FPTP

通熟易懂的例子:一张图片有10个水果,其中苹果4个,西红柿6个。你用自己设计的识别算法检测后,苹果中的4个只检测出3个苹果,而有2个西红柿误识别为苹果,所以精度precision为:
Precision=33+2=0.6\begin{aligned} Precision=\frac{3}{3+2}=0.6 \end{aligned}Precision=3+23=0.6
总而言之,就是从实际苹果的数量中检测出苹果的数量 除以 识别到的苹果总数

4.召回率(Recall)

召回率(recall),也叫查全率,就是在全部阳性事件中,正确预测结果所占的比例,换句话说就是,它衡量模型正确识别出正样本的比例。计算公式为:

Recall=TPTP+FN\begin{aligned} Recall=\frac{TP}{TP+FN} \end{aligned}Recall=TP+FNTP

通熟易懂的例子:一张图片有10个水果,其中苹果4个,西红柿6个。你用自己设计的识别算法检测后,苹果中的4个只检测出3个苹果,所以召回率为:
Recall=34=0.75\begin{aligned} Recall=\frac{3}{4}=0.75 \end{aligned}Recall=43=0.75
总而言之,就是全部苹果的数量中正确识别的个数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值