spark中的数据倾斜的现象、原因、后果

本文深入探讨了Spark中数据倾斜的现象,分析了其产生的原因,包括数据本身的不均衡分布和key设置不合理等,并讨论了数据倾斜可能导致的后果,如拖慢整体程序运行速度和executor资源过度消耗。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • (1)、数据倾斜的现象

    • 多数task执行速度较快,少数task执行时间非常长,或者等待很长时间后提示你内存不足,执行失败。

  • (2)、数据倾斜的原因

    • 数据问题

      • 1、key本身分布不均衡(包括大量的key为空)

      • 2、key的设置不合理

    • spark使用问题

      • 1、shuffle时的并发度不够

      • 2、计算方式有误

  • (3)、数据倾斜的后果

    • 1、spark中的stage的执行时间受限于最后那个执行完成的task,因此运行缓慢的任务会拖垮整个程序的运行速度(分布式程序运行的速度是由最慢的那个task决定的)。

    • 2、过多的数据在同一个task中运行,将会把executor撑爆。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值