自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(316)
  • 收藏
  • 关注

原创 RT-DETR更新汇总贴

RT-DETR使用教程:缝合教程: RT-DETR中的yaml文件详解:labelimg使用教程:

2024-11-11 21:40:38 1635 2

原创 YOLOv11及自研模型更新汇总

群文件2024/11/08日更新。,群文件2024/11/08日更新。

2024-11-08 19:39:26 4821

原创 RTDETR融合TransMamba中的SBSAtt模块

论文速览:现有的去雨变压器采用具有固定范围窗口或沿信道尺寸的自注意力机制,限制了对非局部感受野的利用。针对这个问题,我们引入了一种新型的双分支混合 Transformer-Mamba 网络,称为 TransMamba,旨在有效捕获与雨相关的远程依赖关系。基于雨水退化和背景的不同谱域特征,在第一分支上设计了谱带Transformer块。在谱域信道维度的组合中执行自注意力,以提高对远距离依赖关系的建模能力。为了增强特定频率的信息,我们提出了一个光谱增强前馈模块,该模块聚合了谱域中的特征。

2025-07-31 00:15:00 811

原创 YOLO融合TransMamba中的SBSAtt模块

现有的去雨变压器采用具有固定范围窗口或沿信道尺寸的自注意力机制,限制了对非局部感受野的利用。针对这个问题,我们引入了一种新型的双分支混合 Transformer-Mamba 网络,称为 TransMamba,旨在有效捕获与雨相关的远程依赖关系。基于雨水退化和背景的不同谱域特征,在第一分支上设计了谱带Transformer块。在谱域信道维度的组合中执行自注意力,以提高对远距离依赖关系的建模能力。为了增强特定频率的信息,我们提出了一个光谱增强前馈模块,该模块聚合了谱域中的特征。

2025-07-31 00:15:00 569

原创 RTDETR融合FMNet中的FrequencyAttention模块

论文速览:伪装物体检测 (COD) 具有挑战性,因为伪装物体与其周围环境之间具有很强的相似性,这使得识别变得复杂。现有方法主要依赖于空间局部特征,无法捕获全局信息,而 Transformer 增加了计算成本。为了解决这个问题,提出了频率辅助类曼巴线性注意力网络(FMNet),它利用频域学习来有效地捕获全局特征并减轻物体与背景之间的模糊性。FMNet 引入了多尺度频率辅助曼巴样线性注意力 (MFM) 模块,通过多尺度结构集成频率和空间特征,以处理尺度变化,同时降低计算复杂性。

2025-07-31 00:15:00 646

原创 YOLO融合FMNet中的FrequencyAttention模块

伪装物体检测 (COD) 具有挑战性,因为伪装物体与其周围环境之间具有很强的相似性,这使得识别变得复杂。现有方法主要依赖于空间局部特征,无法捕获全局信息,而 Transformer 增加了计算成本。为了解决这个问题,提出了频率辅助类曼巴线性注意力网络(FMNet),它利用频域学习来有效地捕获全局特征并减轻物体与背景之间的模糊性。FMNet 引入了多尺度频率辅助曼巴样线性注意力 (MFM) 模块,通过多尺度结构集成频率和空间特征,以处理尺度变化,同时降低计算复杂性。

2025-07-31 00:15:00 1017

原创 RTDETR融合MogaNet中的ChannelAggregationFFN模块

论文速览:通过将内核尽可能全局化,现代 ConvNet 在计算机视觉任务中显示出巨大的潜力。然而,深度神经网络(DNN)中多阶博弈论交互的最新进展揭示了现代ConvNet的表示瓶颈,即随着核大小的增加,表达互没有得到有效编码。为了应对这一挑战,我们提出了一个新的现代 ConvNet 系列,称为 MogaNet,用于在纯基于 ConvNet 的模型中进行判别视觉表示学习,并具有良好的复杂性-性能权衡。

2025-07-31 00:00:00 1245

原创 YOLO融合MogaNet中的ChannelAggregationFFN模块

通过将内核尽可能全局化,现代 ConvNet 在计算机视觉任务中显示出巨大的潜力。然而,深度神经网络(DNN)中多阶博弈论交互的最新进展揭示了现代ConvNet的表示瓶颈,即随着核大小的增加,表达互没有得到有效编码。为了应对这一挑战,我们提出了一个新的现代 ConvNet 系列,称为 MogaNet,用于在纯基于 ConvNet 的模型中进行判别视觉表示学习,并具有良好的复杂性-性能权衡。MogaNet将概念上简单而有效的卷积和门控聚合封装到一个紧凑的模块中,其中有效地收集了判别特征并自适应地进行情境化。

2025-07-31 00:00:00 1386

原创 RTDETR融合SaliencyMamba中的CrossModelAtt模块

论文速览:驾驶场景下的驾驶员注意力识别是交通场景感知技术中的热门方向。它旨在了解人类驾驶员的注意力,以关注驾驶场景中的特定目标/物体。然而,交通场景不仅包含大量的视觉信息,还包含与驾驶任务相关的语义信息。现有方法缺乏对驾驶场景中存在的实际语义信息的关注。此外,交通场景是一个复杂且动态的过程,需要持续关注与当前驾驶任务相关的物体。现有模型受其基础框架的影响,往往具有大量参数和复杂的结构。因此,该文提出了一种基于最新Mamba框架的实时显著性Mamba网络。

2025-07-30 00:15:00 640

原创 YOLO融合SaliencyMamba中的CrossModelAtt模块

驾驶场景下的驾驶员注意力识别是交通场景感知技术中的热门方向。它旨在了解人类驾驶员的注意力,以关注驾驶场景中的特定目标/物体。然而,交通场景不仅包含大量的视觉信息,还包含与驾驶任务相关的语义信息。现有方法缺乏对驾驶场景中存在的实际语义信息的关注。此外,交通场景是一个复杂且动态的过程,需要持续关注与当前驾驶任务相关的物体。现有模型受其基础框架的影响,往往具有大量参数和复杂的结构。因此,该文提出了一种基于最新Mamba框架的实时显著性Mamba网络。

2025-07-30 00:15:00 1121

原创 RTDETR融合LEGNet中的EdgeGaussianAggregation

论文速览:遥感物体检测 (RSOD) 经常受到空间分辨率低、传感器噪声、运动模糊和不利照明等退化的影响。这些因素降低了特征的独特性,导致对象表示不明确和前景-背景分离不充分。现有的RSOD方法在对低质量对象的稳健检测方面存在局限性。为了应对这些紧迫的挑战,我们推出了 LEGNet,这是一个轻量级骨干网络,具有新颖的边缘-高斯聚合 (EGA) 模块,专门设计用于增强来自低质量遥感图像的特征表示。

2025-07-29 00:15:00 656

原创 YOLO融合LEGNet中的EdgeGaussianAggregation

遥感物体检测 (RSOD) 经常受到空间分辨率低、传感器噪声、运动模糊和不利照明等退化的影响。这些因素降低了特征的独特性,导致对象表示不明确和前景-背景分离不充分。现有的RSOD方法在对低质量对象的稳健检测方面存在局限性。为了应对这些紧迫的挑战,我们推出了 LEGNet,这是一个轻量级骨干网络,具有新颖的边缘-高斯聚合 (EGA) 模块,专门设计用于增强来自低质量遥感图像的特征表示。

2025-07-29 00:15:00 821

原创 RTDETR融合BAFNet中的DSAM模块

论文速览:检测遥感图像中的小物体对计算机视觉领域构成了重大挑战,主要源于背景的复杂性、像素分辨率的限制以及特征融合过程中的信息丢失。虽然近年来一般目标检测取得了显著进步,但遥感小目标检测仍然是一个未解决的问题,现有框架难以在小规模上实现高性能。在本文中,我们提出了一种称为边界感知特征融合网络 (BAFNet) 的新框架,它显着增强了模型在复杂遥感场景中精确表示和定位小目标的能力。首先,双流注意力融合模块通过双向上下文建模捕获互补的前景和背景线索。共同关注物体及其周围环境可以增强区分小物体的辨别能力。

2025-07-28 00:15:00 926

原创 YOLO融合BAFNet中的DSAM模块

检测遥感图像中的小物体对计算机视觉领域构成了重大挑战,主要源于背景的复杂性、像素分辨率的限制以及特征融合过程中的信息丢失。虽然近年来一般目标检测取得了显著进步,但遥感小目标检测仍然是一个未解决的问题,现有框架难以在小规模上实现高性能。在本文中,我们提出了一种称为边界感知特征融合网络 (BAFNet) 的新框架,它显着增强了模型在复杂遥感场景中精确表示和定位小目标的能力。首先,双流注意力融合模块通过双向上下文建模捕获互补的前景和背景线索。共同关注物体及其周围环境可以增强区分小物体的辨别能力。

2025-07-28 00:15:00 928

原创 RTDETR融合CCFormer中的FCM模块

论文速览:多源遥感影像 (RSI) 可以捕获地面对象的互补信息,用于语义分割。但是,来自不同传感器的多模态数据之间可能存在不一致和干扰噪声。因此,如何有效减少不同模态之间的差异和噪声,并充分利用它们的互补特性是一个挑战。在本文中,我们提出了一个通用的交叉融合转换器框架 (CFFormer) 用于多源 RSI 的语义分割,采用并行双流结构从不同模态中分别提取特征。我们引入了一个特征校正模块 (FCM),它通过在空间和通道维度上组合其他模态的特征来纠正当前模态的特征。

2025-07-27 00:15:00 792

原创 YOLO融合CCFormer中的FCM模块

多源遥感影像 (RSI) 可以捕获地面对象的互补信息,用于语义分割。但是,来自不同传感器的多模态数据之间可能存在不一致和干扰噪声。因此,如何有效减少不同模态之间的差异和噪声,并充分利用它们的互补特性是一个挑战。在本文中,我们提出了一个通用的交叉融合转换器框架 (CFFormer) 用于多源 RSI 的语义分割,采用并行双流结构从不同模态中分别提取特征。我们引入了一个特征校正模块 (FCM),它通过在空间和通道维度上组合其他模态的特征来纠正当前模态的特征。

2025-07-27 00:15:00 964

原创 RTDETR融合OverLock中的ContMix模块

代码链接:论文速览:自上而下的注意力在人类视觉系统中起着至关重要的作用,其中大脑最初会获得场景的粗略概览以发现突出的线索(即首先概览),然后进行更仔细、更细粒度的检查(即,接下来仔细观察)。然而,现代卷积网络仍然局限于金字塔结构,该结构连续对特征图进行采样以进行感受野扩展,而忽略了这一关键的仿生原理。我们提出了 OverLoCK,这是第一个显式包含自上而下的注意力机制的纯 ConvNet 主干架构。

2025-07-26 00:15:00 1032

原创 YOLO融合OverLock中的ContMix模块

代码链接:自上而下的注意力在人类视觉系统中起着至关重要的作用,其中大脑最初会获得场景的粗略概览以发现突出的线索(即首先概览),然后进行更仔细、更细粒度的检查(即,接下来仔细观察)。然而,现代卷积网络仍然局限于金字塔结构,该结构连续对特征图进行采样以进行感受野扩展,而忽略了这一关键的仿生原理。我们提出了 OverLoCK,这是第一个显式包含自上而下的注意力机制的纯 ConvNet 主干架构。与金字塔式骨干网络不同,我们的设计采用分支架构,具有三个协同子网络:1) 编码低/中级特征的 Base-Net;

2025-07-26 00:15:00 1068

原创 RTDETR融合ADCD-Net中的DeformableInteractiveAttention模块

论文速览:随着遥感(RS)技术和卫星观测的进步,多光谱(MS)和全色(PAN)图像等多源数据的融合任务变得越来越重要。然而,涉及某些语义差异的图像融合可能会阻碍模型学习有效特征映射的能力。为了在融合过程中重建更丰富、更一致的特征,我们提出了一种自适应双监督跨深度依赖网络(ADCD-Net),该网络由两个训练阶段组成。第一阶段使用语义感知自我监督策略(SPS)来学习不同模态的深层特征,从而减少语义差异,同时挖掘其自身的非奇异特征。

2025-07-25 00:30:00 782

原创 YOLO融合ADCD-Net中的 DeformableInteractiveAttention 模块

论文速览:随着遥感(RS)技术和卫星观测的进步,多光谱(MS)和全色(PAN)图像等多源数据的融合任务变得越来越重要。然而,涉及某些语义差异的图像融合可能会阻碍模型学习有效特征映射的能力。为了在融合过程中重建更丰富、更一致的特征,我们提出了一种自适应双监督跨深度依赖网络(ADCD-Net),该网络由两个训练阶段组成。第一阶段使用语义感知自我监督策略(SPS)来学习不同模态的深层特征,从而减少语义差异,同时挖掘其自身的非奇异特征。

2025-07-25 00:30:00 886

原创 RTDETR融合ASCNet中的RCSSC模块

论文速览:在现实世界的红外 (IR) 成像系统中,有效学习一致的条带噪声消除模型至关重要。由于跨级语义间隙和全局列特征表征不足,大多数现有的去条带化方法无法精确重建图像。为了解决这个问题,我们提出了一种新的红外图像去条带化方法,称为非对称采样校正网络(ASCNet),它可以有效地捕获全局列关系并将其嵌入到U形框架中,提供全面的判别表示和无缝的语义连接。我们的ASCNet由三个核心元素组成:残差Haar离散小波变换(RHDWT)、像素洗牌(PS)和柱不均匀性校正模块(CNCM)。

2025-07-24 00:45:00 784

原创 YOLO融合ASCNet中的RCSSC模块

论文速览:在现实世界的红外 (IR) 成像系统中,有效学习一致的条带噪声消除模型至关重要。由于跨级语义间隙和全局列特征表征不足,大多数现有的去条带化方法无法精确重建图像。为了解决这个问题,我们提出了一种新的红外图像去条带化方法,称为非对称采样校正网络(ASCNet),它可以有效地捕获全局列关系并将其嵌入到U形框架中,提供全面的判别表示和无缝的语义连接。我们的ASCNet由三个核心元素组成:残差Haar离散小波变换(RHDWT)、像素洗牌(PS)和柱不均匀性校正模块(CNCM)。

2025-07-24 00:30:00 1703

原创 YOLO融合DSFormer中的Token_Selective_Attention

注意力算子可以说是 Transformer 架构的关键区别因素,它们在各种任务上都展示了最先进的性能。然而,Transformer 注意力运算符通常会带来巨大的计算负担,计算复杂度随标记数量呈二次方比例。在这项工作中,我们提出了一种新颖的 transformer 注意力算子,其计算复杂度与标记数量线性成比例。

2025-07-23 01:15:00 1096

原创 RTDETR融合DSFormer中的Token_Selective_Attention

论文速览:注意力算子可以说是 Transformer 架构的关键区别因素,它们在各种任务上都展示了最先进的性能。然而,Transformer 注意力运算符通常会带来巨大的计算负担,计算复杂度随标记数量呈二次方比例。在这项工作中,我们提出了一种新颖的 transformer 注意力算子,其计算复杂度与标记数量线性成比例。

2025-07-23 00:15:00 460

原创 RTDETR融合DSFormer中的KSFAttention模块

论文速览:Transformer在高光谱图像(HSI)分类领域取得了令人满意的成绩。然而,现有的Transformer模型在处理土地覆盖类型多样、光谱信息丰富的HSI场景时面临两个关键挑战:(1)固定的感受野忽略了各种HSI对象所需的有效上下文尺度;(2)上下文融合中无效的自注意力特征影响模型性能。为了解决这些局限性,我们提出了一种用于 HSI 分类的新型双选择性聚变变压器网络 (DSFormer)。

2025-07-22 12:00:00 991

原创 YOLO融合DSFormer中的KSFAttention模块

论文速览:Transformer在高光谱图像(HSI)分类领域取得了令人满意的成绩。然而,现有的Transformer模型在处理土地覆盖类型多样、光谱信息丰富的HSI场景时面临两个关键挑战:(1)固定的感受野忽略了各种HSI对象所需的有效上下文尺度;(2)上下文融合中无效的自注意力特征影响模型性能。为了解决这些局限性,我们提出了一种用于 HSI 分类的新型双选择性聚变变压器网络 (DSFormer)。

2025-07-22 12:00:00 985

原创 RTDETR融合SMFANet中的SFMA模块

论文速览:基于 Transformer 的修复方法取得了显着的性能,因为 Transformer 的自注意力 (SA) 可以探索非局部信息以获得更好的高分辨率图像重建。然而,关键的点积 SA 需要大量的计算资源,这限制了它在低功耗器件中的应用。此外,SA 机制的低通特性限制了其捕获局部细节的能力,从而导致平滑的重建结果。为了解决这些问题,我们提出了一个自调制特征聚合 (SMFA) 模块,以协同利用局部和非局部特征交互来实现更准确的重建。

2025-07-21 12:00:00 1009

原创 YOLO融合SMFANet中的SFMA模块

论文速览:基于 Transformer 的修复方法取得了显着的性能,因为 Transformer 的自注意力 (SA) 可以探索非局部信息以获得更好的高分辨率图像重建。然而,关键的点积 SA 需要大量的计算资源,这限制了它在低功耗器件中的应用。此外,SA 机制的低通特性限制了其捕获局部细节的能力,从而导致平滑的重建结果。为了解决这些问题,我们提出了一个自调制特征聚合 (SMFA) 模块,以协同利用局部和非局部特征交互来实现更准确的重建。

2025-07-21 12:00:00 637

原创 YOLO融合LWGANet中的LWGA模块

遥感 (RS) 视觉任务具有重要的学术和实践意义。然而,他们遇到了许多阻碍有效特征提取的挑战,包括检测和识别单个图像中比例差异很大的多个物体。虽然以前的双分支或多分支架构策略在管理这些对象差异方面是有效的,但它们同时导致了计算需求和参数数量的显着增加。因此,这些架构在资源受限的设备上部署的可行性降低。主要为自然图像设计的现代轻量级骨干网络在从多尺度物体中有效提取特征时经常遇到困难,这损害了它们在 RS 视觉任务中的功效。

2025-07-20 08:15:00 688

原创 RTDETR融合DECS-Net中的FFM模块

论文速览:裂缝是结构严重损伤的早期标志,也是结构健康评价和监测过程中的重要指标。然而,复杂的背景干扰使得小裂纹的分割成为一项极具挑战性的任务。为此,构建了一种基于卷积神经网络(CNN)和变压器的双编码器裂纹分割网络(DECS-Net),实现了裂纹的自动检测。首先,提出了一种高低频注意(HLA)机制,利用Haar小波提取信号的近似分量和详细分量,并进一步处理得到信号的低频和高频特征;

2025-07-19 18:00:00 762

原创 YOLO融合DECS-Net中的FFM模块

论文速览:裂缝是结构严重损伤的早期标志,也是结构健康评价和监测过程中的重要指标。然而,复杂的背景干扰使得小裂纹的分割成为一项极具挑战性的任务。为此,构建了一种基于卷积神经网络(CNN)和变压器的双编码器裂纹分割网络(DECS-Net),实现了裂纹的自动检测。首先,提出了一种高低频注意(HLA)机制,利用Haar小波提取信号的近似分量和详细分量,并进一步处理得到信号的低频和高频特征;

2025-07-19 18:00:00 573

原创 RTDETR融合LWGANet中的LWGA模块

论文速览:遥感 (RS) 视觉任务具有重要的学术和实践意义。然而,他们遇到了许多阻碍有效特征提取的挑战,包括检测和识别单个图像中比例差异很大的多个物体。虽然以前的双分支或多分支架构策略在管理这些对象差异方面是有效的,但它们同时导致了计算需求和参数数量的显着增加。因此,这些架构在资源受限的设备上部署的可行性降低。主要为自然图像设计的现代轻量级骨干网络在从多尺度物体中有效提取特征时经常遇到困难,这损害了它们在 RS 视觉任务中的功效。

2025-07-19 17:24:48 877

原创 RTDETR融合CAF-YOLO中的ACFM模块

论文速览:物体检测在生物医学图像分析中至关重要,尤其是对于病变识别。虽然目前的方法能够熟练地识别和精确定位病变,但它们往往缺乏检测微小生物医学实体(例如,异常细胞、小于 3 毫米的肺结节)所需的精度,这些实体在血液和肺部病理学中至关重要。为了应对这一挑战,我们提出了基于 YOLOv8 架构的 CAF-YOLO,这是一种灵活而强大的医疗对象检测方法,它利用了卷积神经网络 (CNN) 和转换器的优势。为了克服卷积核与远程信息交互能力受限的限制,我们引入了注意力和卷积融合模块 (ACFM)。

2025-07-18 18:00:00 899

原创 YOLO融合CAF-YOLO中的ACFM模块

物体检测在生物医学图像分析中至关重要,尤其是对于病变识别。虽然目前的方法能够熟练地识别和精确定位病变,但它们往往缺乏检测微小生物医学实体(例如,异常细胞、小于 3 毫米的肺结节)所需的精度,这些实体在血液和肺部病理学中至关重要。为了应对这一挑战,我们提出了基于 YOLOv8 架构的 CAF-YOLO,这是一种灵活而强大的医疗对象检测方法,它利用了卷积神经网络 (CNN) 和转换器的优势。为了克服卷积核与远程信息交互能力受限的限制,我们引入了注意力和卷积融合模块 (ACFM)。

2025-07-18 18:00:00 924

原创 RTDETR融合[CVPR2025]EVSSM中的EDFFN模块

论文速览:卷积神经网络(CNNs)和视觉变换器(ViTs)在图像恢复方面表现出色。虽然ViTs通过有效捕捉长距离依赖关系和输入特定特征总体上优于CNNs,但它们在图像分辨率增加时计算复杂性呈平方增长。这一限制妨碍了它们在高分辨率图像恢复中的实际应用。在本文中,我们提出了一种简单而有效的视觉状态空间模型(EVSSM)用于图像去模糊,利用状态空间模型(SSMs)在视觉数据中的优势。

2025-07-17 18:00:00 849

原创 YOLO融合[CVPR2025]EVSSM中的EDFFN模块

论文速览:卷积神经网络(CNNs)和视觉变换器(ViTs)在图像恢复方面表现出色。虽然ViTs通过有效捕捉长距离依赖关系和输入特定特征总体上优于CNNs,但它们在图像分辨率增加时计算复杂性呈平方增长。这一限制妨碍了它们在高分辨率图像恢复中的实际应用。在本文中,我们提出了一种简单而有效的视觉状态空间模型(EVSSM)用于图像去模糊,利用状态空间模型(SSMs)在视觉数据中的优势。

2025-07-17 18:00:00 719

原创 RTDETR融合[CVPR2025]MaIR中的SSA模块

Mamba 的最新进展在图像恢复方面显示出有希望的结果。这些方法通常沿行和列将 2D 图像展平为多个不同的 1D 序列,使用选择性扫描作独立处理每个序列,然后将它们重新组合以形成输出。然而,这种范式忽视了两个重要方面:i) 自然图像中固有的局部关系和空间连续性,以及 ii) 序列之间的差异通过完全不同的方式展开。为了克服这些缺点,我们探讨了基于 Manba 的恢复方法中的两个问题:i) 如何设计一种扫描策略,在促进恢复的同时保持局部性和连续性,以及 ii) 如何聚合以完全不同的方式展开的不同序列。

2025-07-16 18:00:00 615

原创 YOLO融合[CVPR2025]MaIR中的SSA模块

Mamba 的最新进展在图像恢复方面显示出有希望的结果。这些方法通常沿行和列将 2D 图像展平为多个不同的 1D 序列,使用选择性扫描作独立处理每个序列,然后将它们重新组合以形成输出。然而,这种范式忽视了两个重要方面:i) 自然图像中固有的局部关系和空间连续性,以及 ii) 序列之间的差异通过完全不同的方式展开。为了克服这些缺点,我们探讨了基于 Manba 的恢复方法中的两个问题:i) 如何设计一种扫描策略,在促进恢复的同时保持局部性和连续性,以及 ii) 如何聚合以完全不同的方式展开的不同序列。

2025-07-16 18:00:00 1135

原创 RTDETR融合CFFormer中的FeatureCorrection_s2c模块

论文速览:多源遥感图像(RSIs)能够捕捉地面物体的互补信息,用于语义分割。然而,来自不同传感器的多模态数据之间可能存在不一致性和干扰噪声。因此,如何有效减少不同模态之间的差异和噪声,并充分利用其互补特征,是一个挑战。在本文中,我们提出了一种用于多源遥感图像语义分割的通用跨融合变压器框架(CFFormer),采用并行双流结构分别从不同模态中提取特征。我们引入了一个特征校正模块(FCM),通过结合其他模态的特征,在空间和通道维度上校正当前模态的特征。

2025-07-15 18:00:00 1085

原创 YOLO融合CFFormer中的FeatureCorrection_s2c模块

论文速览:多源遥感图像(RSIs)能够捕捉地面物体的互补信息,用于语义分割。然而,来自不同传感器的多模态数据之间可能存在不一致性和干扰噪声。因此,如何有效减少不同模态之间的差异和噪声,并充分利用其互补特征,是一个挑战。在本文中,我们提出了一种用于多源遥感图像语义分割的通用跨融合变压器框架(CFFormer),采用并行双流结构分别从不同模态中提取特征。我们引入了一个特征校正模块(FCM),通过结合其他模态的特征,在空间和通道维度上校正当前模态的特征。

2025-07-15 18:00:00 844

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除