如何推导MMSE检测公式?

本文详细介绍了MMSE检测公式的推导过程,通过最小化均方误差(MMSE)的方法,求解最佳权重矩阵W,以实现对信道模型中发送信号x的最优估计。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【转】如何推导MMSE检测公式?

这两天用到MMSE检测,对于它的推导,我前期只是在“知其然”,今天就来“知其所以然”,来证明一下MMSE检测公式。

MMSE检测用来求解什么?

首先,要知道信道的基本模型:
y=Hx+n\textbf{y}=\textbf{H}\textbf{x}+\textbf{n}y=Hx+n
H\textbf{H}H是信道矩阵,x\textbf{x}x是发送信号向量,n\textbf{n}n是噪声向量。
目标是用MMSE(最小化均方误差)的方法,求得使得KaTeX parse error: Unexpected end of input in a macro argument, expected '}' at position 5: \hat\̲t̲e̲x̲t̲b̲f̲{x}最为准确的W\textbf{W}W
KaTeX parse error: Unexpected end of input in a macro argument, expected '}' at position 5: \hat\̲t̲e̲x̲t̲b̲f̲{x}=\textbf{W}\…

证明

令估计信号误差为:
KaTeX parse error: Unexpected end of input in a macro argument, expected '}' at position 16: \textbf{e}=\hat\̲t̲e̲x̲t̲b̲f̲{x}-\textbf{x}
则有MSE(均方误差)为:
KaTeX parse error: Unexpected end of input in a macro argument, expected '}' at position 25: …}_{MSE}=E||\hat\̲t̲e̲x̲t̲b̲f̲{x}-\textbf{x}|…
WMMSE=arg⁡max⁡WE∣∣Wy−x∣∣2\textbf{W}_{MMSE}=\arg \max_{\textbf{W}} E||\textbf{W}\textbf{y}-\textbf{x}||^2WMMSE=argWmaxE∣∣Wyx2

作出如下重写:
KaTeX parse error: Unexpected end of input in a macro argument, expected '}' at position 26: …}_{MSE}=E||\hat\̲t̲e̲x̲t̲b̲f̲{x}-\textbf{x}|…
eMSE=E{tr(WyyHWH−WyxH−xyHWH+xxH)} \textbf{e}_{MSE}=E\{tr(\textbf{W}\textbf{y}\textbf{y}^H\textbf{W}^H-\textbf{W}\textbf{y}\textbf{x}^H-\textbf{x}\textbf{y}^H\textbf{W}^H+\textbf{x}\textbf{x}^H)\} eMSE=E{tr(WyyHWHWyxHxyHWH+xxH)}
eMSE=tr(WRyWH−WHRx−RxHHWH+Rx) \textbf{e}_{MSE}=tr(\textbf{W}\textbf{R}_y\textbf{W}^H-\textbf{W}\textbf{H}\textbf{R}_x-\textbf{R}_x\textbf{H}^H\textbf{W}^H+\textbf{R}_x) eMSE=tr(WRyWHWHRxRxHHWH+Rx)
我们现在令eMSE\textbf{e}_{MSE}eMSEW\textbf{W}W的偏导为0\textbf{0}0,也即:
W∗RyT−(HRx)T=0 \textbf{W}^*\textbf{R}_y^T-(\textbf{H}\textbf{R}_x)^T=\textbf{0} WRyT(HRx)T=0
同时取复共轭:
WRyH=(HRx)H \textbf{W}\textbf{R}_y^H=(\textbf{H}\textbf{R}_x)^H WRyH=(HRx)H
R\textbf{R}R均为Hermitian矩阵,所以矩阵本身等于它的复共轭矩阵:
WRy=RxHH \textbf{W}\textbf{R}_y=\textbf{R}_x\textbf{H}^H WRy=RxHH
得到:
W=RxHHRy−1 \textbf{W}=\textbf{R}_x\textbf{H}^H\textbf{R}_y^{-1} W=RxHHRy1
又因为:
Ry=E[yyH]=HRxHH+Rn \textbf{R}_y=E[\textbf{y}\textbf{y}^H]=\textbf{H}\textbf{R}_x\textbf{H}^H+\textbf{R}_n Ry=E[yyH]=HRxHH+Rn
Rx=E[xxH]=IRn=E[nnH]=σ2I \textbf{R}_x=E[\textbf{x}\textbf{x}^H]=\textbf{I}\\ \textbf{R}_n=E[\textbf{n}\textbf{n}^H]=\sigma^2\textbf{I} Rx=E[xxH]=IRn=E[nnH]=σ2I
那么有:
W=HH(HHH+σ2I)−1 \textbf{W}=\textbf{H}^H(\textbf{H}\textbf{H}^H+\sigma^2\textbf{I})^{-1} W=HH(HHH+σ2I)1

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值