洛谷 P8816 [CSP-J 2022] 上升点列 题解

最长上升子序列

根据题目中,每个坐标的横纵坐标均单调递增,所以明显可以使用最长上升子序列.

定义状态 fi,pf_{i,p}fi,p,表示正在节点 iii 时,还剩下 ppp 次插入机会,所能达到的最大长度.

定义变量 dis=∣xi−xj∣+∣yi−yj∣−1.dis = |x_i-x_j|+|y_i-y_j|-1.dis=xixj+yiyj1.,表示 iiijjj 节点至少要插 disdisdis 个节点.

为什么要 −1-11 呢?因为 iii 节点不用插呀.

状态转移方程

fi,p=max(fi,p,fj,p−dis+dis+1).f_{i,p} = max(f_{i,p},f_{j,p-dis}+dis+1).fi,p=max(fi,p,fj,pdis+dis+1).

目标

maxmaxmax{fi,kf_{i,k}fi,k},1≤i≤n1 \le i \le n1in.

初始化

fi,j=j+1,0≤j≤k,1≤i≤n.f_{i,j} = j+1,0 \le j \le k,1 \le i \le n.fi,j=j+1,0jk1in.

解释一下

首先,这里的 maxmaxmax 就像一维的最长上升子序列一样,然后插 disdisdis 个节点首先会

耗费 disdisdis 次插入机会,然后是距离 disdisdis,但是为什么要 +1+1+1 呢?因为 jjj 节点要是要插入的.

目标很好理解,取最大值就行,但初始化设为 j+1j+1j+1 是因为最简单的方法就是直接插 jjj 个节点.

代码

#include<iostream>
#include<cstdio>
#include<utility>
#include<cstring>
#include<algorithm>
#include<cmath>

using namespace std;

int n, k;
pair<int, int> a[502]; // pair 存 x,y 坐标 
int f[502][102];
// f[i][p] 表示在节点 i 还剩下 p 次插入机会所能达到的最大长度 

int main() {
	scanf("%d%d", &n, &k);
	for (int i = 1; i <= n; i++)
		scanf("%d%d", &a[i].first, &a[i].second);
	sort(a + 1, a + n + 1); // 按照 x 坐标排序 
	for (int i = 1; i <= n; i++) { // 初始化 
		for (int j = 0; j <= k; j++) 
			f[i][j] = j + 1; // 直接放 j 个点
	}
	for (int i = 1; i <= n; i++) { // 最长上升子序列 
		for (int j = 1; j < i; j++) {
			if (a[j].first > a[i].first || a[j].second > a[i].second) continue; // 欧几里得距离不符合要求 
			int dis = abs(a[i].first - a[j].first) + abs(a[i].second - a[j].second) - 1; // 计算 i 到 j 至少要插多少个点 
			// 建议是因为 i 这个点不需要再插入了 
			for (int p = dis; p <= k; p++)
				f[i][p] = max(f[i][p], f[j][p-dis] + dis + 1); // 转移,用掉 dis 个点后加上 dis 长度 + 1
			// 加 1 是因为 j 这个点也要插 
		}
	}
	int ans = 0;
	for (int i = 1; i <= n; i++)
		ans = max(ans, f[i][k]); // 在取 k 个点的情况下找最大值 
	printf("%d", ans);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值