洛谷 P8814 [CSP-J 2022] 解密 题解

题目传送门:P8814 [CSP-J 2022] 解密

解方程

题目中说, n = p q n = pq n=pq e d = ( p − 1 ) ( q − 1 ) + 1 ed = (p-1)(q-1)+1 ed=(p1)(q1)+1 m = n − e d + 2 m=n-ed+2 m=ned+2.

e d ed ed 的式子展开,得到:

e d = p ( q − 1 ) − ( q − 1 ) + 1 ed = p(q-1)-(q-1)+1 ed=p(q1)(q1)+1

e d = p q − p − q + 2 ed=pq-p-q+2 ed=pqpq+2

再把展开后的式子带入 m m m 中,得:

m = n − ( p q − p − q + 2 ) + 2. m=n-(pq-p-q+2)+2. m=n(pqpq+2)+2.

m = n − p q + p + q − 2 + 2 m=n-pq+p+q-2+2 m=npq+p+q2+2

∵ n = p q \because n=pq n=pq

∴ m = p q − p q + p + q − 2 + 2 \therefore m=pq-pq+p+q-2+2 m=pqpq+p+q2+2

m = p + q . m=p+q. m=p+q.

如果想要求出 p p p q q q 的值,那么可以再构造出一个二元一次方程,然后构成

一个二元一次方

所以,最简单的方法就是求出 p − q p-q pq 的值

p - q = ?

回想起完全平方公式

( a − b ) 2 = a 2 + 2 a b + b 2 (a-b)^2=a^2+2ab+b^2 (ab)2=a2+2ab+b2

( a + b ) 2 = a 2 − 2 a b + b 2 (a+b)^2=a^2-2ab+b^2 (a+b)2=a22ab+b2

( a + b ) 2 − ( a − b ) 2 = 2 a b + 2 a b = 4 a b (a+b)^2-(a-b)^2=2ab+2ab=4ab (a+b)2(ab)2=2ab+2ab=4ab

刚好,如果 p = a , q = b p=a,q=b p=a,q=b 呢?

( p − q ) 2 = ( p + q ) 2 − 4 p q (p-q)^2=(p+q)^2-4pq (pq)2=(p+q)24pq

左右开方

p − q = ( p + q ) 2 − 4 p q . p-q=\sqrt {(p+q)^2-4pq}. pq=(p+q)24pq .

∵ p + q = m = n − e d + 2 , n = p q \because p+q=m=n-ed+2,n=pq p+q=m=ned+2n=pq

∴ p − q = ( n − e d + 2 ) 2 − 4 n \therefore p-q=\sqrt{(n-ed+2)^2-4n} pq=(ned+2)24n

方程组

{ p + q = n − e d + 2 p − q = ( n − e d + 2 ) 2 − 4 n \left\{\begin{matrix} p+q=n-ed+2&\\ p-q=\sqrt{(n-ed+2)^2-4n} & \end{matrix}\right. {p+q=ned+2pq=(ned+2)24n

输入 n , e , d n,e,d n,e,d 三个数后,就可以求出p-q和p+q的值了.

然后用加减消元法.

两式相加,得:

p = ( n − e d + 2 + ( n − e d + 2 ) 2 − 4 n ) 2 p=\frac {(n-ed+2+\sqrt{(n-ed+2)^2-4n})} {2} p=2(ned+2+(ned+2)24n )

两式相减,得:

q = ( n − e d + 2 − ( n − e d + 2 ) 2 − 4 n ) 2 q=\frac {(n-ed+2-\sqrt{(n-ed+2)^2-4n})} {2} q=2(ned+2(ned+2)24n )

判断是否是正解

前2个条件直接套就行,也就是 p q = n , e d = ( p − 1 ) ( q − 1 ) + 1 pq=n,ed=(p-1)(q-1)+1 pq=n,ed=(p1)(q1)+1.

因为在开根的时候,可能会产生一些不是正解的数,所以只要判断 p , q p,q pq 是否为真即可.

代码

#include<bits/stdc++.h>
using namespace std;
int k;
int main() {
//	freopen("decode.in", "r", stdin);
//	freopen("decode.out", "w", stdout);
	scanf("%d", &k);
	while (k--) {
		long long n, d, e;
		scanf("%lld%lld%lld", &n, &d, &e);
		// 接下来就是套公式 
		long long p = (n - e * d + 2 + sqrt((n - e * d + 2) * (n - e * d + 2) - 4 * n)) / 2;
		long long q = (n - e * d + 2 - sqrt((n - e * d + 2) * (n - e * d + 2) - 4 * n)) / 2;
		// 判断这2个解是否成立 
		if (p * q == n && e * d == (p - 1)  * (q - 1) + 1&& p && q) {
			if (p > q) swap(p, q); // 小的数在前面 
			printf("%lld %lld\n", p, q);
		}
		else
			printf("NO\n");
	}
	return 0;
}

知识点

完全平方公式,方程

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值