题目传送门:P8814 [CSP-J 2022] 解密
解方程
题目中说, n = p q n = pq n=pq, e d = ( p − 1 ) ( q − 1 ) + 1 ed = (p-1)(q-1)+1 ed=(p−1)(q−1)+1, m = n − e d + 2 m=n-ed+2 m=n−ed+2.
把 e d ed ed 的式子展开,得到:
e d = p ( q − 1 ) − ( q − 1 ) + 1 ed = p(q-1)-(q-1)+1 ed=p(q−1)−(q−1)+1
e d = p q − p − q + 2 ed=pq-p-q+2 ed=pq−p−q+2
再把展开后的式子带入 m m m 中,得:
m = n − ( p q − p − q + 2 ) + 2. m=n-(pq-p-q+2)+2. m=n−(pq−p−q+2)+2.
m = n − p q + p + q − 2 + 2 m=n-pq+p+q-2+2 m=n−pq+p+q−2+2
∵ n = p q \because n=pq ∵n=pq
∴ m = p q − p q + p + q − 2 + 2 \therefore m=pq-pq+p+q-2+2 ∴m=pq−pq+p+q−2+2
m = p + q . m=p+q. m=p+q.
如果想要求出 p p p 和 q q q 的值,那么可以再构造出一个二元一次方程,然后构成
一个二元一次方组
所以,最简单的方法就是求出 p − q p-q p−q 的值
p - q = ?
回想起完全平方公式
( a − b ) 2 = a 2 + 2 a b + b 2 (a-b)^2=a^2+2ab+b^2 (a−b)2=a2+2ab+b2
( a + b ) 2 = a 2 − 2 a b + b 2 (a+b)^2=a^2-2ab+b^2 (a+b)2=a2−2ab+b2
( a + b ) 2 − ( a − b ) 2 = 2 a b + 2 a b = 4 a b (a+b)^2-(a-b)^2=2ab+2ab=4ab (a+b)2−(a−b)2=2ab+2ab=4ab
刚好,如果 p = a , q = b p=a,q=b p=a,q=b 呢?
( p − q ) 2 = ( p + q ) 2 − 4 p q (p-q)^2=(p+q)^2-4pq (p−q)2=(p+q)2−4pq
左右开方
p − q = ( p + q ) 2 − 4 p q . p-q=\sqrt {(p+q)^2-4pq}. p−q=(p+q)2−4pq.
∵ p + q = m = n − e d + 2 , n = p q \because p+q=m=n-ed+2,n=pq ∵p+q=m=n−ed+2,n=pq
∴ p − q = ( n − e d + 2 ) 2 − 4 n \therefore p-q=\sqrt{(n-ed+2)^2-4n} ∴p−q=(n−ed+2)2−4n
方程组
{ p + q = n − e d + 2 p − q = ( n − e d + 2 ) 2 − 4 n \left\{\begin{matrix} p+q=n-ed+2&\\ p-q=\sqrt{(n-ed+2)^2-4n} & \end{matrix}\right. {p+q=n−ed+2p−q=(n−ed+2)2−4n
输入 n , e , d n,e,d n,e,d 三个数后,就可以求出p-q和p+q的值了.
然后用加减消元法.
两式相加,得:
p = ( n − e d + 2 + ( n − e d + 2 ) 2 − 4 n ) 2 p=\frac {(n-ed+2+\sqrt{(n-ed+2)^2-4n})} {2} p=2(n−ed+2+(n−ed+2)2−4n)
两式相减,得:
q = ( n − e d + 2 − ( n − e d + 2 ) 2 − 4 n ) 2 q=\frac {(n-ed+2-\sqrt{(n-ed+2)^2-4n})} {2} q=2(n−ed+2−(n−ed+2)2−4n)
判断是否是正解
前2个条件直接套就行,也就是 p q = n , e d = ( p − 1 ) ( q − 1 ) + 1 pq=n,ed=(p-1)(q-1)+1 pq=n,ed=(p−1)(q−1)+1.
因为在开根的时候,可能会产生一些不是正解的数,所以只要判断 p , q p,q p,q 是否为真即可.
代码
#include<bits/stdc++.h>
using namespace std;
int k;
int main() {
// freopen("decode.in", "r", stdin);
// freopen("decode.out", "w", stdout);
scanf("%d", &k);
while (k--) {
long long n, d, e;
scanf("%lld%lld%lld", &n, &d, &e);
// 接下来就是套公式
long long p = (n - e * d + 2 + sqrt((n - e * d + 2) * (n - e * d + 2) - 4 * n)) / 2;
long long q = (n - e * d + 2 - sqrt((n - e * d + 2) * (n - e * d + 2) - 4 * n)) / 2;
// 判断这2个解是否成立
if (p * q == n && e * d == (p - 1) * (q - 1) + 1&& p && q) {
if (p > q) swap(p, q); // 小的数在前面
printf("%lld %lld\n", p, q);
}
else
printf("NO\n");
}
return 0;
}
知识点
完全平方公式,方程