毕业设计:基于YOLOv5目标检测模型的创新与改进


毕业设计:基于YOLOv5目标检测模型的创新与改进

引言

目标检测作为计算机视觉领域中的一个重要任务,广泛应用于自动驾驶、安防监控、人脸识别等多个场景。近年来,随着深度学习的迅速发展,YOLO系列(You Only Look Once)目标检测算法因其高效性和实时性,成为了最受欢迎的目标检测方法之一。特别是YOLOv5,作为YOLO系列中的一个重要版本,在速度和精度之间取得了良好的平衡,广泛应用于各类实时目标检测任务。

然而,尽管YOLOv5在许多场景中表现出色,但在一些特定任务中,仍存在一定的局限性。为了进一步提高其检测性能和精度,我在本次毕业设计中提出了一些改进方案,主要包括:改进算法架构和更换损失函数。本文将详细介绍这些创新点,并展示它们对YOLOv5性能的提升效果。

YOLOv5简述

YOLOv5是Ultralytics开发的YOLO系列目标检测算法中的一个版本。它继承了YOLO系列的高效性,采用了一些新技术来提高模型的精度和速度。YOLOv5的核心特点包括:

  • 实时性:YOLOv5能够在合理的硬件条件下实时进行目标检测,适用于边缘计算设备。
  • 灵活性:YOLOv5支持多种网络结构和配置文件,可以根据实际需求选择不同的网络大小。
  • 增强的性能:YOLOv5在许多基准数据集上达到了优异的性能,尤其是在小物体检测和多类别检测中表现突出。

本文的创新点与改进

1. 改进YOLOv5算法架构

YOLOv5的网络结构采用了CSPDarknet53作为主干网络,通过多层卷积进行特征提取。尽管这一结构已经具有较好的性能,但仍然可以通过以下几种方法进行优化:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

微雨盈萍cbb

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值