毕业设计:基于YOLOv5目标检测模型的创新与改进
引言
目标检测作为计算机视觉领域中的一个重要任务,广泛应用于自动驾驶、安防监控、人脸识别等多个场景。近年来,随着深度学习的迅速发展,YOLO系列(You Only Look Once)目标检测算法因其高效性和实时性,成为了最受欢迎的目标检测方法之一。特别是YOLOv5,作为YOLO系列中的一个重要版本,在速度和精度之间取得了良好的平衡,广泛应用于各类实时目标检测任务。
然而,尽管YOLOv5在许多场景中表现出色,但在一些特定任务中,仍存在一定的局限性。为了进一步提高其检测性能和精度,我在本次毕业设计中提出了一些改进方案,主要包括:改进算法架构和更换损失函数。本文将详细介绍这些创新点,并展示它们对YOLOv5性能的提升效果。
YOLOv5简述
YOLOv5是Ultralytics开发的YOLO系列目标检测算法中的一个版本。它继承了YOLO系列的高效性,采用了一些新技术来提高模型的精度和速度。YOLOv5的核心特点包括:
- 实时性:YOLOv5能够在合理的硬件条件下实时进行目标检测,适用于边缘计算设备。
- 灵活性:YOLOv5支持多种网络结构和配置文件,可以根据实际需求选择不同的网络大小。
- 增强的性能:YOLOv5在许多基准数据集上达到了优异的性能,尤其是在小物体检测和多类别检测中表现突出。
本文的创新点与改进
1. 改进YOLOv5算法架构
YOLOv5的网络结构采用了CSPDarknet53作为主干网络,通过多层卷积进行特征提取。尽管这一结构已经具有较好的性能,但仍然可以通过以下几种方法进行优化: