探索性因子分析(EFA)与验证性因子分析(CFA)的区别
1. 探索性因子分析(EFA)
定义:探索性因子分析(Exploratory Factor Analysis, EFA)是一种用于探索和发现潜变量(因子)与观测变量(题项)之间结构关系的统计方法。它主要用于在研究者对数据结构没有明确假设的情况下,通过数据分析来探索潜在的因子结构。
应用场景:
- 量表预调查阶段:在量表开发的初期,EFA用于探索题项与潜在因子之间的关系,帮助研究者确定量表的初步结构。
- 数据降维:通过提取共同因子,减少变量的数量,简化数据结构。
- 结构效度分析:通过共同度和载荷系数等指标,评估量表的效度,并为删除或优化题项提供依据。
特点:
- 数据驱动:EFA是基于数据的分析,研究者事先对因子结构没有明确的假设。
- 探索性:通过分析数据,探索潜在的因子结构,发现变量之间的关系。
2. 验证性因子分析(CFA)
定义:验证性因子分析(Confirmatory Factor Analysis, CFA)是一种用于验证研究者提出的潜变量与观测变量之间结构关系的统计方法。它主要用于在研究者对数据结构有明确假设的情况下,通过数据分析来验证该假设的合理性。
应用场景:
- 正式量表分析阶段:在量表开发的后期,CFA用于验证量表的效度,确保量表结构与理论假设一致。
- 模型验证:通过拟合指标(如卡方值、RMSEA、CFI等)评估模型的拟合优度,验证理论模型的合理性。
特点:
- 理论驱动:CFA是基于理论的分析,研究者事先对因子结构有明确的假设。
- 验证性:通过分析数据,验证研究者提出的因子结构是否与数据一致。
- EFA与CFA的区别
4. 总结
- 探索性因子分析(EFA):主要用于在量表开发的初期,探索和发现潜变量与观测变量之间的关系,帮助研究者确定量表的初步结构。
- 验证性因子分析(CFA):主要用于在量表开发的后期,验证研究者提出的潜变量与观测变量之间的关系,确保量表结构与理论假设一致。
在实际研究中,EFA和CFA可以结合使用。例如,在新量表编制过程中,先进行EFA探索因子结构,然后进行CFA验证该结构的合理性。通过这种方式,可以确保量表的效度和信度。
更多关于因子分析的操作和解读,可以参考SPSSAU(在线SPSS)平台的相关教程和案例。