自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(393)
  • 收藏
  • 关注

原创 KF-GINS 和 OB-GINS 的 Earth类 和 Rotation 类

原始 Markdown文档、Visio流程图、XMind思维导图见:https://github.com/LiZhengXiao99/Navigation-Learning。

2025-01-27 10:00:00 832

原创 KF-GINS源码阅读

KF-GINS 是武大 i2Nav 实验室开源的一套松组合导航程序;可以读取 IMU 数据文件、GNSS 结果文件,进行松组合解算,计算位置、速度、姿态、陀螺仪零偏、加速度计零偏、陀螺仪比例、加速度计比力,共 21 维状态向量。代码量小,有详细的文档、注释和讲解,代码结构很好理解,有一些可以学习的工程技巧。用 cloc 对 src 目录进行统计,结果如下。可以看出代码量很小,只有1412行,注释很详细,足有804行。无需自己配置,作者把它们放到 ThirdParty 文件夹,并在 CMakeLists 文件

2025-01-27 09:00:00 1135

原创 TGINS源码阅读

直接运行终端会输出很多很多中间数据,有些调试输出没删干净,先全局搜索 matprint 把解算代码中的都注释掉。写输出代码之前先试试在前面打个断点,确认程序能运行到那。代码风格比较 C 语言,用了一些 C++

2025-01-26 09:30:00 371

原创 GNSS-SDR源码阅读(一)软件介绍、编译调试、配置文件

GNSS-SDR(GlobalNavigationSatelliteSystems、SoftwareDefinedReceiver)是一个用 C++ 实现的 GNSS 软件接收机开源项目。有了 GNSS-SDR,用户可以通过创建一个图来构建 GNSS 软件接收器,图中的节点是信号处理块,线条代表它们之间的数据流。该软件为不同的合适射频前端提供接口,并实现从接收器一直到 PVT 解算的所有功能。

2025-01-26 08:30:00 664

原创 ORB-SLAM3源码阅读(三)LocalMapping 线程

先加入关键帧和地图点到当前激活地图,删除其余帧,并通过对当前帧的附近关键帧操作,利用视觉 BA 或视觉-惯性 BA 优化地图。对于关键帧中每个未匹配的 ORB 特征点,在另一个关键帧中搜索与其他不匹配点进行匹配,丢弃不满足对极约束的匹配。:采用 ORB-SLAM1 (单目)的初始化流程,按照关键帧速率 4 Hz 运行 2s 揷入关键帧 ,然后按比例缩放的地图,包括10个关键帧以及上百个地图点,然后通过 Visual-Only BA 进行优化。随着关键帧数量的增加,BA 的复杂度也会随之提高。

2025-01-25 13:00:00 683

原创 ORB-SLAM3源码阅读(五)ORB-SLAM 延伸

有了对数数据,就可以根据 RGB-D 数据,更新整个八叉树地图。假设在 RGB-D 图像中观测到某个像素带有深度 d,就说明在深度值对应的空间点上观测到了一个占据数据,并且从相机光心出发,到这个点的线段上都没有物体(否则会被遮挡)。学过地信的都知道这种地图编码方式比较高效,节省空间,当某个方块的子节点都相同,就无需展开。ORB-SLAM3 生成的是稀释点云地图,只能定位,无法直接用于导航,需要对稀疏点云稠密化构建稠密地图。对于占据和空白来说,选择用概论的形式表达,这样就可以动态建模地图中的障碍物信息。

2025-01-25 10:30:00 999

原创 ORB-SLAM3源码阅读(二)Tracking 线程

由于此时搜索出的角点过多,因此本文对检测出来的角点群利用非极大值抑制方法进行 FAST 角点的筛选,并在保留的 FAST 角点上计算方向,以此来实现特征点的旋转不变性,最后计算当前图像帧中角点的 BRIEF( binary robustindependent elementary features)描述子用于与上一帧中的角点的 BRIEF 描述子进行特征匹配。实际情况下,从不同的距离,不同的方向、角度,不同的光照条件下观察一个物体时,物体的大小,形状 ,明暗都会有所不同。

2025-01-24 10:15:00 1187

原创 ORB-SLAM3源码阅读(四)Loop&Merging 线程

Welding window 是由匹配的关键帧组合而成、重复的 3D 点被融合、更新共视图以及本质图的连接关系。当检测到闭环候选帧的时候,就需要对当前关键帧和对应的闭环候选帧之间计算其变换关系,即Sim3 求解。所有的被闭环处的关键帧观察到的地 图点会通过映射在一个小范围里,然后去搜索它的近邻匹配。,也 就能对当前关键帧进行位姿校正 (当然也要对关键帧对应的MapPoints 以及其共视的关键帧进行校正)。以及其共视帧,以及被这些关键帧观测的地图点。,并 更新关键帧位姿,以及在图中的边。

2025-01-24 08:15:00 895

原创 01-ORB-SLAM3源码阅读(一)程序简介、编译调试、基础知识点

ORB 指 Oriented FAST and rotated BRIEF,是一种结合 FAST 和 BRIEF,并引入旋转不变性的一种特征点和描述子;SLAM 指 Simultaneous Localization and Mapping,指的是同时进行实时定位和地图构建。ORB-SLAM3 是迄今为止,最完整的视觉惯性 SLAM 系统系统,它是第一个集成了单目相机、双目相机、RGB-D相机,以及单目相机结合 IMU、双目相机结合 IMU 的 SLAM 系统。并且在 ORB-SLAM2 的基础上,改进了相

2025-01-23 13:00:00 1267 1

原创 VINS-Mono源码阅读(五)VIO 初始化

需要初始化的变量如下,分别是滑窗,状态,和外参:Xxk​xcb​​x0​x1​xn​xcb​λ0​λ1​λm​pbk​w​vbk​w​qbk​w​ba​bg​k∈0npcb​qcb​。

2025-01-23 08:30:00 1379

原创 VINS-Mono源码阅读(四)IMU预积分

加速度是由与载体固连的加速度计测量得到的(会跟随载体转动),每一时刻的加速度都是在当前的载体系下得到的,进行速度和位置的积分,前提是把这些加速度都统一到同一个坐标系下。如果我们假设参考坐标系下载体的初始速度和初始位置已知,利用载体运动过程中参考系下的加速度信息,就可以不断地进行积分运算,更新实时的速度和位置。及速度等状态,根据这种思路,如果知道上一帧图像采样时刻载体的位姿和速度,则可以根据两帧之间的 IMU 测量(角速度和比力)递推得到当前帧的位姿和速度。,利用 IMU 测量得到的比力和角速度信息进行。

2025-01-22 18:30:00 993

原创 VINS-Mono源码阅读(二)Feature_tracker 节点:视觉前端

setMask() 函数,先对跟踪到的特征点 forw_pts 按照跟踪次数降序排列(认为特征点被跟踪到的次数越多越好),然后遍历这个降序排列,对于遍历的每一个特征点,在 mask 中将该点周围半径为 MIN_DIST 的区域设置为 0,在后续的遍历过程中,不再选择该区域内的点。因此,本质矩阵的维度是3 x 3。转化为用优化问题,为防止局部最小,用图像金字塔提高光流追踪的稳定性,图像缩放了更容易追踪,最终还要把找到的特征点返回到实际图像上的位置,上一次金字塔最终的结果作为下一次金字塔最终的初值。

2025-01-22 09:00:00 1696

原创 VINS-Mono源码阅读(一)程序简介、编译调试、配置文件

与双目相机和 RGB-D 相机相比,单目相机具有结构简单、成本低和处理速度快的优点。然而,单目 VSLAM 存在尺度不确定性、无法对齐位姿和重力方向的自身缺点和快速运动导致的运动模糊的环境下容易跟踪丢失等不足。为弥补此问题,可将单目相机和 IMU 相结合的传感器融合,这种融合方案被称为单目视觉惯性里程计(Visual Inertial Odometry,VIO)或单目视觉惯性 SLAM(Visual-inertial SLAM,VINS)。

2025-01-21 14:13:17 1590

原创 SoftGNSS软件接收机源码阅读(一)程序简介、运行调试、执行流程

卫星信号由导航电文、测距码、载波三个层次组成,GNSS 原始的信号频率高达 1.5 Ghz,且信号过于微弱,

2025-01-21 14:12:45 1317

原创 基于因子图优化的GNSS定位算法原理

GNSS在诸如城市、施工现场、农田、密林等城市峡谷等遮挡环境下:且由于在此类环境下,这些测量值的时间相关性更加明显,使用传统的滤波手段进行处理仅考虑前一状态的值忽略了其他历史状态值,使得定位结果更加不精确。为充分挖掘历史信息的作用,引入因子图优化(FGO)对GNSS测量值进行融合解算,该方法将伪距、载波相位、多普勒观测量添加为因子节点,引入多普勒因子连接历元间变量节点,实现解算模型的因子图优化。相较于滤波,因子图的优势体现在:因子图技术的潜力,也在一个近期的Google在美国导航协会的ION GNSS+ 2

2025-01-18 15:45:00 429

原创 GraphGNSSLib README翻译

此仓库是开源软件包的实现,GraphGNSSLib 利用因子图优化(FGO)来执行GNSS定位和实时动态(RTK)定位.在这个软件包中,历史和当前时期的测量结果被结构化为因子图,然后通过非线性优化进行求解。在容器中位于 ~/graph1/shared_dir ,你可以下载代码到 ~/shared_dir ,并且在容器中编译(推荐给那些有兴趣更改源代码的人)。如果你不熟悉ROS,我们强烈推荐推荐你用我们的Docker容器来使用GraphGNSSLib,具体见下文。已经安装在你的电脑上。

2025-01-18 07:30:00 725

原创 03-GICI-LIB源码阅读(三)因子图优化模型

原始 Markdown文档、Visio流程图、XMind思维导图见:https://github.com/LiZhengXiao99/Navigation-Learning。

2025-01-17 08:30:00 219

原创 02-GICI-LIB源码阅读(二)主要的类和程序执行流程

和 是 cpp 中用于函数包装和绑定的工具,在 GICI中用于绑定数据回调函数。 是一个可调用对象,可以存储任何可调用对象,例如函数指针、成员函数指针或 lambda 表达式。您可以使用 来创建一个函数对象,以便稍后调用。例如:在上面的例子中,我们使用 来存储 函数,并在 函数中调用它。 用于将函数和其参数绑定到特定的对象。它返回一个可调用对象,可以将其传递给 或直接调用。例如:在上面的例子中,我们使用 将 函数绑定到 对象上,并将参数 传递给它。然后,我们将绑定后的函数存储到 中

2025-01-16 16:45:00 978

原创 01-GICI-LIB源码阅读(一)程序简介、编译调试、配置文件

作者的介绍:为了阐明 GNSS 的算法模型,加快在多源融合应用中针对 GNSS 的开发效率,我们开源了 GICI-LIB,并辅以详尽的文档和全面的数据集。GICI-LIB 以可扩展的设计理念,实现了GIC传感器之间多种形式的松紧组合。评估结果表明,GIC 系统能够在多种复杂环境下,提供分米到米级的高精度导航。GICI-LIB 全称GNSS/INS/CameraIntegrated Navigation Library,是上海交大最新开源的一套基于图优化的 GNSS+INS+Camera 集成导航定位库。

2025-01-16 11:30:00 387

原创 【论文翻译】GICI-LIB:A GNSS-INS-Camera Integrated Navigation Library

准确的导航定位信息对机器人和车辆至关重要。近年来,全球导航卫星系统(GNSS)、惯性导航全球导航卫星系统(GNSS)、惯性导航系统(INS)和相机(Camera)量测数据的融合(Integrated),由于在不同环境下的鲁棒性和高精度,受到了广泛关注。但在这些系统中,很难充分发挥 GNSS 的作用,因为 GNSS 可选择的误差模型、卫星星座、信号频率和增强服务类型太多了;不同的 GNSS 解算方式会带来不同的精度、鲁棒性、依赖性。

2025-01-15 19:59:42 716

原创 goGPS WiKi网站翻译

注意:目前只支持静止测站的解算,还不能动态解算。那是2007年,在米兰理工大学–科莫校区,最初有一套用来教学生GPS数据处理和 Kalman 滤波的程序。当时Mirko Reguzzoni 和 Eugenio Realini 觉得,基于MATLAB语言的新的GPS处理软件可能有发展空间。在一些学生(创始者)的帮助下,他们开始写一套利用 Kalman 滤波的完整软件。goGPS 的第一个版本可以追溯到2009年,当时代码在 GPL 下发布并上传到 SourceForge 平台。之后该软件开始在大学里被使用,并

2025-01-15 19:55:37 763

原创 PPPLib源码阅读

PPPLib 基于 RTKLib 以 C++ 为主要开发语言编写,支持后处理 PPP、PPK、INS/GNSS 松组合和紧组合 ,作者是我的老师陈超。

2025-01-15 19:54:50 339

原创 微分方程-姿态阵微分方程及求解-四元数微分方程及求解-等效旋转矢量微分方程及求解

C˙bi=Cbi(ωibb×)\dot{\boldsymbol{C}}_{b}^{i}=\boldsymbol{C}_{b}^{i}\left({\boldsymbol{\omega}_{i b}^{b}}\times\right)C˙bi​=Cbi​(ωibb​×)描述的是姿态的变化和角速率 ωibb\boldsymbol{\omega}_{i b}^{b}ωibb​ 的关系,角速率正好可以由陀螺仪测量得到,三个轴装三个陀螺,就有了微分方程,再结合初值,可得到姿态变化阵。简记C˙bi=Cbi(ωib

2025-01-14 10:50:21 956

原创 PSINS工具箱学习(五)SINS-GNSS组合导航

原始 Markdown文档、Visio流程图、XMind思维导图见:https://github.com/LiZhengXiao99/Navigation-Learning。

2025-01-14 10:47:55 475

原创 PSINS工具箱学习(四)捷联惯导更新算法

原始 Markdown文档、Visio流程图、XMind思维导图见:https://github.com/LiZhengXiao99/Navigation-Learning。

2025-01-14 10:47:20 323

原创 03-PSINS工具箱学习(三)让AI解释PSINS中的各种卡尔曼滤波函数

原始 Markdown文档、Visio流程图、XMind思维导图见:https://github.com/LiZhengXiao99/Navigation-LearningPSINS 中的 Kalman 滤波代码都在百行以内,没调用什么函数,而且通用性很强,拿去让 AI 解释,效果挺好。

2024-12-22 13:00:00 1740

原创 02-PSINS工具箱学习(二)姿态的表示:姿态阵、四元数、欧拉角、等效旋转矢量的概念和转换

由于捷联惯导系统采用通过姿态矩阵计算建立的数学平台,在捷联惯导系统的姿态、速度和位置的更新算法中,姿态算法对整个系统的精度影响最大,它是算法研究和设计的核心。姿态求解目标:知道初始姿态参数,实时根据陀螺仪的测量,输出姿态参数:根据原点的位置和轴线得到指向,可以将惯导坐标系分为以下几类:也称 ECI,原点在地球质心,坐标轴不随地球自转(Z轴指向北极,X轴指向春分点)。惯性传感器输出以此为基准。尽管受到太阳引力场的作用,存在 6∗10−7g6*10^{-7}g6∗10−7g 的公转向心力;但在地球表面以地球做惯

2024-12-22 10:30:00 234

原创 01-PSINS工具箱学习(一)下载安装初始化、SINS-GPS组合导航仿真、习惯约定与常用变量符号、数据导入转换、绘图显示

PSINS(Precise Strapdown Inertial Navigation System 高精度捷联惯导系统算法)工具箱由西北工业大学自动化学院惯性技术教研室严恭敏老师开发和维护。工具箱分为Matlab和C++两部分。主要应用于捷联惯导系统的数据处理和算法验证开发,它包括惯性传感器数据分析惯组标定初始对准惯导AVP(姿态-速度-位置)更新解算、组合导航Kalman滤波等功能。C++部分采用VC6编写,可以用于嵌入式开发。如果你之前还没接触过PSINS工具箱,强烈建议先去看严老师的视频讲解。

2024-12-21 10:15:00 2086

原创 GAMP源码阅读:卫星位置钟差计算

原始 Markdown文档、Visio流程图、XMind思维导图见:https://github.com/LiZhengXiao99/Navigation-Learning。

2024-12-21 08:00:00 1206

原创 GAMP源码阅读:RINEX文件读取

原始 Markdown文档、Visio流程图、XMind思维导图见:https://github.com/LiZhengXiao99/Navigation-Learning。

2024-12-20 14:00:00 895

原创 GAMP源码阅读:PPP中的模型改正:对流层延迟、电离层延迟、天线相位、潮汐、地球自转效应、引力延迟

对流层一般指距离地面 50km 内的大气层,是大气层质量的主要部分。当导航信号穿过对流层时,由于传播介质密度的增加,信号传播路径和传播速度会发生改变,由此引起的 GNSS 观测值误差称为对流层延迟。对流层延迟一般可分为干延迟和湿延迟,对于载波相位和伪距完全相同,一般在米级大小,可通过模型改正和参数估计的方法来削弱其影响。修正模型如下:T=MdryTdry+MwetTwetT=M_{d r y} T_{d r y}+M_{w e t} T_{w e t}T=Mdry​Tdry​+Mwet​Twet​式

2024-12-20 09:00:00 1294

原创 GAMP源码阅读(下)精密单点定位 PPP

以非差非组合双频 PPP 模型为例,假如某一时刻观测到 m\mathrm{m}m 颗卫星,则可建立 4 m4 \mathrm{~m}4 m 个观测方程,其误差方程为:V4m×1=H4m×n⋅X−ln×1\underset{4 m \times 1}{\mathbf{V}}=\underset{4 m \times n}{\mathbf{H}} \cdot \mathbf{X}-\underset{n \times 1}{\mathbf{l}}4m×1V​=4m×nH​⋅X−n×1l​式中,V\mat

2024-12-19 11:45:00 1068

原创 GAMP源码阅读(中)伪距单点定位 SPP

默认使用广播星历计算卫星位置、钟差,使用克罗布歇模型通过广播星历中的参数计算电离层延迟,使用 Saastamoinen 模型计算对流层延迟。调用 计算卫星位置、卫星钟差:调用 计算接收机位置:加权最小二乘,其中会调用 valsol 进行卡方检验和GDOP检验。存入方位角和俯仰角 ,赋值解算状态结构体 ssat。2、estpos()这个函数是 GAMP 新加的,原本 的内容都移到 中了;这个函数看着着实费劲,有段看半天没看明白,后来把代码复制给 AI,才知道那啥计算阶乘、组合数。先初始化待估参

2024-12-19 10:45:00 669

原创 RTKLIB源码阅读(十)精密单点定位 PPP

【代码】RTKLIB源码阅读(十)精密单点定位 PPP。

2024-12-18 10:30:00 2410

原创 GAMP源码阅读(上)主要类型、后处理流程

GAMP 全称 (GNSSAMPrecise positioning),在 RTKLIB 的基础上,将一些多余的函数、代码简洁化,精简出后处理 PPP 部分,并对算法进行改进增强。简化后代码比 RTKLIB 原版还要简单,对初学者非常友好,在我接触过的导航定位开源程序中算是最简单的。使用也很方便,软件包里提供了 VS 工程,和组织好的配置文件、数据文件;设置好 pthreads 库,简单改改文件路径就能算出结果。大部分沿用 RTKLIB,做了少量拓展大部分沿用 RTKLIB,做了少量拓展。

2024-12-18 08:15:00 868

原创 RTKLIB源码阅读(九)相对定位 RTK、PPK、RTD

存RTK选项,定位结果2、sol_t:结果结构体3、SOLQ_XXX:解的类型状态4、ambc_t:模糊度固定控制结构体5、ssat_t:卫星状态控制结构体6、prcopt_t:算法处理选项结构体7、obs_t:观测值信息结构体存一系列的字段是数组,字段表示存着的数目,字段表示目前内存空间最大能存的数目函数执行向中添加观测值数据的操作,先检验值,不够就函数中读取完数据后,会调用根据time, rcv, sat ,对的元素进行排序、去重,得到历元数,调用,进行星历数据的排

2024-12-17 12:45:00 278

原创 RTKLIB源码阅读(八)伪距单点定位 SPP

卫星GNSS电磁波信号在传播过程中需要穿过地球大气层,会产生一些大气延迟误差,包括电离层延迟误差和对流层延迟误差。电离层的范围从离地面约50公里开始一直伸展到约1000公里高度的地球高层大气空域。电离层的主要特性由电子密度、电子温度、碰撞频率、离子密度、离子温度和离子成分等空间分布的基本参数来表示。电离层的研究对象主要是电子密度随高度的分布。电子密度(或称电子浓度)是指单位体积的自由电子数,随高度的变化与各高度上大气成分、大气密度以及太阳辐射通量等因素有关。

2024-12-17 10:30:00 272

原创 RTKLIB源码阅读(六)观测值误差改正:电离层、对流层、天线相位中心、相位缠绕、DCB

文件头结束于。多组总电子含量,每组以,结束于。多组电子含量均方根误差,与总电子含量对应,开始于,结束于DCB数据块开始于,结束于,也称辅助数据块天线相位中心,即天线]接收信号的电气中心,其空间位置在出厂时往往不在天线的几何中心上。天线所辐射出的电磁波在离开天线一定的距离后,其等相位面会近似为一个球面,该球面的球心即为该天线的等效相位中心,即天线相位中心(Antenna Phase Center )GNSS观测量是相对于接收机天线的平均相位中心。

2024-12-16 16:35:39 211

原创 RTKLIB源码阅读(五)导航电文、星历数据读取、卫星位置钟差计算

GPS卫星信号由载波、伪码、导航电文(数据码)三个层次组成。数据码首先与伪码异或相加实现扩频,然后二者的组合码通过双向移位键控(BPSK)对载波进行调制。用户接收机首先对载波信号进行BPSK(调相调制)解调,使卫星信号的中心频率从L1下变频为0,之后再将载波解调后的卫星信号与接收机内部复制的C/A码Gi做自相关运算,剥离卫星信号中的C/A码,使信号频宽变回到只含数据码的基带,以得到 50bps 数据码,再按导航电文的格式最终将数据码编译成导航电文。每一个子帧的第一个字均为遥测字,在导航电文中每6s出现一次,

2024-12-16 16:35:02 1730

原创 RTKLIB源码阅读(四)观测数据读取:RINEX、RTCM、NMEA、接收机原始数据

卫星导航定位都是通过对卫星观测以获得卫星所需的观测量来实现的,卫星发射的信号由载波测距码导航电文三部分组成,接收机通过接收处理卫星信号生成定位所需的观测量。RINEX 是的缩写。采用文本文件ASCII码存储数据。数据记录格式与接收机的制造厂商和具体型号无关,这样可以方便数据的传递,使数据尽可能多被使用。观测数据文件O导航信息文件N气象数据文件Meteorological Data File),本文主要介绍OBS和NAV文件的读取。文件结构都以节、记录、字段和列为单位逐级组织。

2024-12-11 10:00:00 2068

基于matlab的信号与系统软件实验课程作业-涉及周期信号的合成与分解、方波吉布斯现象、三角波合成、周期信号的频谱分析、二阶状态轨迹的显示、信号的抽样与内插以及电话拨号音的合成与识别等.zip

基于matlab的信号与系统软件实验课程作业-涉及周期信号的合成与分解、方波吉布斯现象、三角波合成、周期信号的频谱分析、二阶状态轨迹的显示、信号的抽样与内插以及电话拨号音的合成与识别等.zip 它包含了5个实验内容,涉及周期信号的合成与分解、方波吉布斯现象、三角波合成、周期信号的频谱分析、二阶状态轨迹的显示、信号的抽样与内插以及电话拨号音的合成与识别等。 主要功能 编写MATLAB代码实现各种信号处理和分析的实验任务 绘制相关实验结果的图形显示 开发基于GUI的二阶状态轨迹显示程序 环境 所有实验内容基于Matlab 2017a, Win10 1704 实验内容 共五次实验,前四次试验为按照指导书步骤编写代码,最后一次为课程设计实验 1. 周期信号的合成与分解 1. 周期对称方波信号的合成 选取奇对称周期方波的周期T=0.02s,幅度E=6,采用有限项级数替代无限项级数来逼近该函数。分别取前1、2、5和100项有限级数来近似,编写程序并把结果显示在一幅图中 2. 方波吉布斯现象 选取奇对称周期方波的周期T=0.02s,幅度E=6,采用有限项级数替代无限项级数来逼近该函数。分别取前3、5、10和100项有限级数来近似,编写程序并把结果显示在一幅图中 3. 三角波合成 设计采用有限项级数逼近偶对称周期三角信号的实验,编制程序并显示结果 4. 周期信号的频谱 编制程序显示奇对称方波信号与偶对称三角信号的频谱 2. 二阶状态轨迹的显示 编写代码并制作GUI界面根据给定RLC参数判断系统状态 3. 信号的抽样与内插 使用Simulink建立一个抽样和恢复的模型系统 运行仿真之后比较输入信号、抽样信号、滤波后信号和恢复信号的频谱 4. 电话拨号音的合成与识别 利用矩阵不同的基频合成0-9不同按键的拨号音,并能够对不同的拨号音加以正确的识别,实现由拨号音解析出电话号码的过程

2025-06-16

基于PatchTST框架的时间序列预测系统-利用 Mamba 状态空间模型捕捉多尺度上下文依赖(含设计文档及说明).zip

基于PatchTST框架的时间序列预测系统_利用 Mamba 状态空间模型捕捉多尺度上下文依赖(含设计文档及说明).zip 提供了一个基于PatchTST框架的时间序列预测模型,并且集成了多个相关的开源项目,如Mamba、iTransformer、Reformer等。 主要功能: 提供了一个基于PatchTST框架的时间序列预测模型 集成了多个相关的开源项目,如Mamba、iTransformer、Reformer等 支持多变量时间序列预测 提供了示例脚本,可以直接运行获得预测结果 技术栈: Python 深度学习框架PyTorch [资源说明] 1、该项目是团队成员近期最新开发,代码完整,资料齐全,含设计文档等 2、上传的项目源码经过严格测试,功能完善且能正常运行,请放心下载使用! 3、本项目适合计算机相关专业(人工智能、通信工程、自动化、电子信息、物联网等)的高校学生、教师、科研工作者、行业从业者下载使用,可借鉴学习,也可直接作为毕业设计、课程设计、作业、项目初期立项演示等,也适合小白学习进阶,遇到问题不懂就问,欢迎交流。 4、如果基础还行,可以在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 5、不懂配置和运行,可远程教学 6、欢迎下载,沟通交流,互相学习,共同进步!

2025-06-16

基于Spark的分布式实时音乐推荐系统源码+数据库+答辩ppt+设计报告(课程设计).zip

基于Spark的分布式实时音乐推荐系统源码+数据库+答辩ppt+设计报告(课程设计).zip 本项目采用了分布式计算技术,基于Spark框架,实现了数据的分布式处理和计算。具体架构如下: 数据采集模块:采用爬虫技术获取音乐相关的数据,包括歌曲信息、评论信息、用户信息等。 数据处理模块:对采集到的数据进行清洗和处理,将处理后的数据进行存储和索引。 算法模块:采用机器学习算法和推荐算法,对用户的历史行为和偏好进行分析,为用户推荐符合其偏好的音乐。 web前后端模块:提供用户接口,用户可以通过该接口进行音乐的搜索和播放。 功能需求 1 用户注册和登录 · 用户可以注册新账号,并通过登录验证身份。 · 用户登录后可享受个性化推荐和其他功能。 2 音乐搜索 · 用户可以通过关键词搜索音乐,系统将返回相关的音乐结果。 · 可以支持搜索结果的按照不同条件进行排序和过滤。 3 音乐播放 · 用户可以点击音乐结果,进入音乐播放页面进行音乐的在线播放。 4 个性化推荐 · 系统根据用户的历史行为和偏好,为用户推荐符合其口味的音乐。 · 推荐算法应考虑音乐分类、用户喜好度等因素,提供个性化推荐结果。 5 用户喜好管理 · 用户可以收藏喜欢的音乐,方便快速查找和播放。 · 用户可以取消收藏,管理个人喜好和播放历史。 6 管理员权限管理 · 管理员用户可以管理用户的账号信息,包括修改、删除等操作。 · 管理员用户可以管理音乐库,包括添加、编辑、删除音乐信息。

2025-06-16

基于支持向量机的电力负荷预测项目matlab实现源码+文档说明及数据集+详细注释(课程设计).zip

基于支持向量机的电力负荷预测项目matlab实现源码+文档说明及数据集+详细注释(课程设计) 使用指南 步骤如下: 编辑 mainsvm.m,指定路径 Models/NNModel.mat、TreeModel.mat; 确保数据文件与二进制文件在预期位置; 运行 Matlab 脚本 mainsvm.m; 查看命令窗口中的绘图结果与预测输出; 可调整网格搜索后参数用于提升精度。 【核心文件介绍】 mainsvm.m:主脚本,负责数据加载、特征构建、训练 & 预测流程 SVMcgForRegress.m:网格搜索优化 SVM 参数(C 与 γ) svmtrain.mexw64、svmpredict.mexw64:Windows 下编译好的二进制文件,用于 SVM 模型训练与预测 筛选后数据.xlsx:预处理后的历史数据(负荷 + 气象) 网格式搜索支持向量机最优参数c和g.docx:参数调优报告文档,记录网格搜索细节与结果

2025-06-14

基于pytorch的去噪扩散概率模型实现源码(提供了Unet模型和GaussianDiffusion类,用于训练和生成图像)+设计文档.zip

基于pytorch的去噪扩散概率模型实现源码(提供了Unet模型和GaussianDiffusion类,用于训练和生成图像)+设计文档.zip 这是一个基于 PyTorch 实现的去噪扩散概率模型(Denoising Diffusion Probabilistic Model)。它是一种新的生成建模方法,可能有潜力与生成对抗网络(GANs)媲美。它使用去噪得分匹配(denoising score matching)来估计数据分布的梯度,然后使用朗之万采样(Langevin sampling)从真实分布中采样。 主要功能: 实现了去噪扩散概率模型的 PyTorch 版本 提供了 Unet 模型和 GaussianDiffusion 类,用于训练和生成图像 提供了 Trainer 类,用于简化训练过程 支持多 GPU 训练

2025-06-16

毕业设计基于Transformer的运动想象脑电信号CNN分类系统源码+说明运行文档.zip

毕业设计基于Transformer的运动想象脑电信号CNN分类系统源码+说明运行文档.zip 模块功能详解 .idea/:IDE(PyCharm)项目配置,不参与项目逻辑,忽略即可。 model/:包含 .pth 训练权重文件或模型定义。定义 CNN + Transformer 架构。 stastical/:提供信号统计量与特征提取功能(如均值、功率谱密度、频带能量)。 tools/:定义读取 EEG 数据、格式转换、数据增强、分割训练/验证集等常用方法。 visualization/:绘制性能曲线、Cam 热图、时频图等结果展示功能。 Morlet.py:用于从时间信号转频域的连续 Morlet 小波变换函数。 train.py:核心训练脚本,包含数据加载、模型构建、训练循环、日志输出、模型保存逻辑。 train2_kfold.py:集成 k 折交叉验证机制,循环训练并记录每折结果后保存平均性能。 demo.py:推理入口,加载模型权重,执行预测并在随机/预设样本上展示 Grad-CAM 热图。 README.md:说明项目背景、架构原理、运行方法与性能指标。

2025-06-13

使用python和OpenCV生成马赛克数据增强图像程序源码(适用yolo系列).zip

使用python和OpenCV生成马赛克数据增强图像程序源码(适用yolo系列) 生成马赛克数据增强图像 支持显示带有边界框的增强图像 Python OpenCV实现

2025-06-12

基于mnist数据集+pytorch搭建Lenet5的手写数字识别系统(源码+模型+数据+详细说明).zip

基于mnist数据集+pytorch搭建Lenet5的手写数字识别系统(源码+模型+数据+详细说明) 基于 MNIST 数据集的手写数字识别项目,使用 PyTorch 框架构建了 LeNet-5 卷积神经网络模型。该项目实现了手写数字的训练和预测功能。 主要功能 使用 MNIST 数据集进行手写数字识别 构建 LeNet-5 卷积神经网络模型 实现模型的训练和测试 支持自定义图片的手写数字预测 技术栈 Python 3.8 PyTorch 1.10.2

2025-06-08

基于Spark和Flask框架的在线电影推荐系统.zip

基于Spark和Flask框架的在线电影推荐系统.zip 主要功能 利用Spark实现基于协同过滤的电影推荐算法 使用Flask框架搭建Web应用程序 采用MongoDB数据库存储电影数据和用户评分信息 技术栈 Spark 1.5 Flask MongoDB

2025-06-08

课程设计基于matlab深度学习的音符识别系统(含源码+文档说明+数据).zip

课程设计基于matlab深度学习的音符识别系统(含源码+文档说明+数据).zip 【项目资源说明】 【1】该项目由团队近期开发,代码完整,资料齐全,含设计文档等 【2】上传的项目源码经过严格测试,功能完善且稳定运行,易复现 【3】本项目适合计算机相关专业(人工智能、通信工程、自动化、电子信息、物联网等)的高校学生、教师、科研工作者、行业从业者下载使用,可借鉴学习,也可直接作为毕业设计、课程设计、作业、项目初期立项演示等,也适合小白学习进阶,遇到问题不懂就问,欢迎交流。 【4】如果基础还行,可以在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 【5】小白不懂配置和运行,可远程指导及技术支持 欢迎下载学习,共同探讨与交流!

2025-06-08

基于二次规划的路径规划与MPC求解器项目源码+文档说明(课程设计).zip

基于二次规划的路径规划与MPC求解器项目源码+文档说明(课程设计).zip 基于 Python 的模型预测控制 (MPC) 库,用于求解二次规划 (QP) 问题。它支持线性时不变 (LTI) 和线性时变 (LTV) 系统,以及线性约束条件。该库主要用于原型设计,如果需要更高的性能,可以考虑其他替代方案。 主要功能 提供一个一站式的 solve_mpc() 函数,用于求解 MPC 问题 支持 LTI 和 LTV 系统,以及线性约束条件 提供了一个示例,演示如何定义和求解三阶积分器的 MPC 问题 技术栈 Python 数值计算库 (如 NumPy) 二次规划求解器 (如 ProxQP)

2025-06-08

期末大作业基于python+CNN网络的手写数字识别系统源码+数据+说明文档.zip

期末大作业基于python+CNN网络的手写数字识别系统源码+数据+说明文档.zip 【功能】 构建简单的卷积神经网络模型 训练和测试MNIST手写数字识别模型 将二进制存储的MNIST数据集转换为图片 该项目主要用于学习计算机视觉和熟悉PyTorch框架。目前已经完成了简单的模型构建、训练和测试,以及将二进制存储的数据集转换为图片的小工具。未来还计划添加一些可视化功能,并实践诸如AlexNet、VGG、GooLeNet和ResNet等常用视觉网络模型。

2025-06-08

基于深度学习的作物病害检测系统(本科课设作业).zip

基于深度学习的作物病害检测系统(本科课设作业).zip 基于深度学习的作物病害检测系统。它使用卷积神经网络(CNN)对作物叶子图像进行分类,以检测作物是否感染病害以及具体的病害类型。该项目包括以下主要功能点: 主要功能点 图像采集:从相机获取作物叶子图像,并使用白色背景进行拍摄以便于分析。 图像预处理:对获取的高分辨率图像进行缩放和归一化处理。 特征提取和选择:使用CNN层进行特征提取,并通过最大池化和dropout层进行特征选择。 模型训练:使用预训练的AlexNet模型权重初始化CNN层,并训练其他层以提高分类准确率。 图像分类:使用训练好的模型对作物叶子图像进行分类,识别是否感染病害以及具体的病害类型。 Web应用程序开发:使用Flask框架开发了一个简单的Web应用程序,用于展示模型的功能。 模型部署:将训练好的模型部署到Heroku服务器上,以便全球用户使用。

2025-06-08

课程设计-基于采用重心法和K-Means的麦当劳门店物流中心选址系统python源码+说明文档+数据.zip

课程设计-基于采用重心法和K-Means的麦当劳门店物流中心选址系统项目源码+说明文档+数据.zip 实验目的及任务 本实验为安信息与计算机学院运筹学实践课大作业,采用重心法和 k-means 聚类算法对安徽省内麦当劳店进行物流中心选址,指导老师:高羽佳老师。 实验时间为 2023 年 6 月 28 日。 收集数据 用重心法计算安徽省内最佳物流中心 用K-means法进行聚类分析 数据收集 收集安徽省内92家麦当劳经纬度数据,并把需要配送的需求量化为权重指标。 地址 经度 纬度 权重 麦当劳(合肥包河万达店) 117.310043 31.863634 8 麦当劳(合肥之心城店) 117.264324 31.859837 4 麦当劳(合肥天鹅湖万达店) 117.228255 31.827045 10 【功能】 收集安徽省内92家麦当劳店的经纬度和权重数据 使用单重心法计算安徽省内最佳物流中心坐标 使用K-means聚类算法对数据进行聚类分析,确定最佳聚类数目K=14 对14个聚类中心分别计算最佳物流中心坐标

2025-06-08

基于python机器学习开发的中文错别字检索自动纠正项目源码含GUI界面+演示视频+数据.zip

基于python机器学习开发的中文错别字检索自动纠正项目源码含GUI界面+演示视频 含数据+演示视频 【项目资源说明】 【1】该项目由团队近期开发,代码完整,资料齐全,含设计文档等 【2】上传的项目源码经过严格测试,功能完善且稳定运行,易复现 【3】本项目适合计算机相关专业(人工智能、通信工程、自动化、电子信息、物联网等)的高校学生、教师、科研工作者、行业从业者下载使用,可借鉴学习,也可直接作为毕业设计、课程设计、作业、项目初期立项演示等,也适合小白学习进阶,遇到问题不懂就问,欢迎交流。 【4】如果基础还行,可以在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 【5】小白不懂配置和运行,可远程指导及技术支持 欢迎下载学习,共同探讨与交流!

2025-06-06

用于实现形状记忆合金的热力学耦合本构模型ABAQUS子程序.zip

用于实现形状记忆合金的热力学耦合本构模型ABAQUS子程序.zip 项目是一个ABAQUS子程序,用于实现形状记忆合金的热力学耦合本构模型。该模型基于Lagoudas等人发表的工作,并进行了适当的修改,以考虑Hartl等人和Karakalas等人的相关研究成果。 主要功能 实现形状记忆合金的热力学耦合本构模型 考虑部分相变循环的影响 可用于ABAQUS有限元分析 技术栈 Fortran

2025-06-06

基于生成式对抗网络的书法字体生成项目(实战练习赛版)源码+文档说明及全部资料.zip

基于生成式对抗网络的书法字体生成项目(实战练习赛版)源码+文档说明及全部资料.zip 【功能】 使用条件对抗网络学习中文字体风格 引入标签混洗技术提高模型泛化能力 提供预处理脚本和训练/推理代码 【项目资源说明】 【1】该项目由团队近期开发,代码完整,资料齐全,含设计文档等 【2】上传的项目源码经过严格测试,功能完善且稳定运行,易复现 【3】本项目适合计算机相关专业(人工智能、通信工程、自动化、电子信息、物联网等)的高校学生、教师、科研工作者、行业从业者下载使用,可借鉴学习,也可直接作为毕业设计、课程设计、作业、项目初期立项演示等,也适合小白学习进阶,遇到问题不懂就问,欢迎交流。 【4】如果基础还行,可以在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 【5】小白不懂配置和运行,可远程指导及技术支持 欢迎下载学习,共同探讨与交流!

2025-06-05

基于PyQt6+python实现手写字体文本生成器源码带GUI界面+使用说明+exe可执行文件.zip

基于PyQt6+python实现手写字体文本生成器源码带GUI界面+使用说明+exe可执行文件.zip 【项目说明】 特点 实时预览: 在左侧配置效果参数时,右侧实时显示生成的手写文本图片,方便用户调整和查看效果。 自定义效果: 用户可以根据需要调整多种效果参数,以生成符合个人喜好或特定场景需求的手写文本图片。 方便易用: 使用直观的界面设计,使用户能够轻松上手,只需通过拖动滑块即可快速调整生成手写文本图片的效果。 多样化背景: 提供常见图片的同时,用户可以选择生成各种尺寸纯色背景,以满足不同设计和应用场景的需求。 个性化预设: 支持将参数保存为预设,避免多次重复的无意义调整参数 使用方法 配置效果参数: 打开 HandwritingGenerator,使用左侧的配置面板调整手写文本图片的效果参数。 实时预览: 在左侧配置的同时,右侧将实时显示生成的手写文本图片,以便用户可视化调整效果。 输出图片: 调整好效果参数后,点击导出按钮即可将生成的手写文本图片保存到本地。 运行; # 进入项目目录 cd HandwritingGenerator # 安装依赖 pip install PyQt6 # 运行应用 python main.py

2025-06-05

课程作业基于数字图像处理与SVC的花卉识别系统项目源码+文档说明+报告+数据.zip

课程作业基于数字图像处理与SVC的花卉识别系统项目源码+文档说明+报告.zip 【项目资源说明】 【1】该项目由团队近期开发,代码完整,资料齐全,含设计文档等 【2】上传的项目源码经过严格测试,功能完善且稳定运行,易复现 【3】本项目适合计算机相关专业(人工智能、通信工程、自动化、电子信息、物联网等)的高校学生、教师、科研工作者、行业从业者下载使用,可借鉴学习,也可直接作为毕业设计、课程设计、作业、项目初期立项演示等,也适合小白学习进阶,遇到问题不懂就问,欢迎交流。 【4】如果基础还行,可以在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 【5】小白不懂配置和运行,可远程指导及技术支持 欢迎下载学习,共同探讨与交流!

2025-06-05

基于matlab实现CNN卷积神经网络手写数字识别系统源码+数据集+实验报告.zip

基于matlab实现CNN卷积神经网络手写数字识别系统源码+数据集+实验报告.zip 一. 实验介绍 实验中总共尝试了三种结构的网络模型:无隐层神经网络,简单的带隐层的神经网络和带一层卷积池化的简单CNN,在普通神经网络中,更改隐层层数,在CNN中,又尝试了加入dropout算法和更改判别网络的隐藏层层数,看最后的结果有何不同。 二. 训练方法 在权值更新函数中统一采用SGD算法,使用60000个训练数据更新一轮权值。 三. 网络设计 1.无隐层网络 2.带隐层简单神经网络 2.1 单隐层 2.2 双隐层 3. CNN 特征提取网络都一致: 3.1 判别网络单隐层,区分使用dropout和不使用dropout方法 3.2 判别网络双隐层,未使用dropout 四. 实验结果 三类网络的实验结果如下: 1. 无隐层网络 运行时间: 准确率: 2.普通神经网络 2.1 单隐层 运行时间: 准确率: 2.2 双隐层 运行时间: 准确率: 3.CNN 3.1 判别网络单隐层 运行时间: 准确率: 3.2 判别网络单隐层+dropout 运行时间: 准确率: 3.3 判别网络双隐层 运行时间: 准确率: 五. 结果分析比较 令人惊奇的是,使用普通的神经网络就能获得比较高的正确率(最高92%左右)。 就简单的无隐层,单双隐层网络而言。单隐层网络的正确率(92%)高于无隐层(89.6%)的网络,这是复合预期的。但到了双隐层,正确率(90%)就有一定的下降,判断是因为参数设置的不合理,随着层数的增加,出现了过拟合。不过,在实验中加入dropout算法后,结果也没有变好。应该是隐层节点数设置的不合理。 在网络中加入卷积和池化层组成的特征提取网络之后,正确率最高可以达到(97.63%)。在单隐层中应用dropout算法之后,正确率(97.3

2025-06-05

创建、解决和可视化车间调度问题(JSSP)的Python项目源码+说明文档.zip

创建、解决和可视化车间调度问题(JSSP)的Python项目源码+说明文档.zip 它采用模块化设计,允许用户轻松扩展库,添加新的求解器、调度规则、可视化功能等。该库提供了丰富的功能,包括数据结构、基准实例、随机实例生成、多种求解器(约束编程求解器、调度规则求解器)、甘特图可视化、图表示、强化学习环境等。 【主要功能】 提供易于使用的数据结构,管理和操作车间调度实例和解决方案。 支持加载常见的基准实例,无需手动下载。 支持生成具有可定制大小和属性的随机实例。 支持使用约束编程求解器(OR-Tools)和调度规则求解器求解问题。 提供甘特图可视化功能,可视化最终调度和调度规则求解器的迭代过程。 支持将车间调度问题表示为各种图结构,如二元图和资源-任务图。 提供用于使用图神经网络或强化学习解决问题的环境。

2025-07-27

毕设基于python机器学习实现电梯故障预测系统带数据集及全部资料.zip

基于python机器学习实现电梯故障预测系统带数据集及全部资料.zip [资源说明] 1、该项目是团队成员近期最新开发,代码完整,资料齐全,含设计文档等 2、上传的项目源码经过严格测试,功能完善且能正常运行,请放心下载使用! 3、本项目适合计算机相关专业(人工智能、通信工程、自动化、电子信息、物联网等)的高校学生、教师、科研工作者、行业从业者下载使用,可借鉴学习,也可直接作为毕业设计、课程设计、作业、项目初期立项演示等,也适合小白学习进阶,遇到问题不懂就问,欢迎交流。 4、如果基础还行,可以在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 5、不懂配置和运行,可远程教学 6、欢迎下载,沟通交流,互相学习,共同进步!

2025-07-22

Android系统的沙盒产品-轻量级的Android虚拟机(满足APP多开、移动安全、免ROOT HOOK、APP静默安装、APP管控等各种需求).zip

Android系统的沙盒产品-轻量级的Android虚拟机(满足APP多开、移动安全、免ROOT HOOK、APP静默安装、APP管控等各种需求) 运行于Android系统的沙盒产品,可以理解为轻量级的"Android虚拟机"。它提供了一整套内部与外部的隔离机制,可以满足APP多开、移动安全、免ROOT HOOK等各种需求。 功能 支持APP多开,可在同一部手机上安装多个微信/QQ/WhatsApp等APP 提供内部与外部的隔离机制,可实现应用行为审计、数据加密、数据采集等移动安全需求 提供Java和Native的Hook能力,可实现虚拟定位、改机、APP监控管理等功能 支持APP静默安装、静默升级、静默卸载 可完全控制内部APP的行为,如访问系统API、获取设备信息等 支持Google服务,可满足海外市场需求 支持VR程序移植 技术栈 Android APP层、Framework层和Native层技术 Java和Native的Hook机制 虚拟文件系统和进程隔离

2025-07-19

npp.8.8.2.Installer.x64.exe

npp.8.8.2.Installer.x64.exe

2025-08-01

轻量级分割网络模型LightM-UNet源码.zip

轻量级分割网络模型LightM-UNet源码.zip

2025-07-31

毕业课程设计-Android 虚拟应用程序项目(多开APP)+说明文档.zip

毕业课程设计-Android 虚拟应用程序项目(多开APP).zip Android 虚拟应用程序项目,支持 Android 4.0 到 13.0 版本,提供双开或多开功能,并支持 Xposed 插件。 主要功能 支持 Android 4.0 到 13.0 版本 支持不同版本的 hook 技术 完成全面的生产测试,可以无缝运行大多数应用程序和游戏 重写了支持非 root 动态授予应用程序权限的安全引擎 重写了支持实时捕获各种应用程序网络数据的网络库 技术栈 Java, C++, AIDL, C, Python, Makefile

2025-07-19

毕业设计作品-基于Python的强化学习充电桩调度仿真系统源码+文档说明及全部资料.zip

毕业设计作品-基于Python的强化学习充电桩调度仿真系统源码+文档说明及全部资料.zip [资源说明] 1、该项目是团队成员近期最新开发,代码完整,资料齐全,含设计文档等 2、上传的项目源码经过严格测试,功能完善且能正常运行,请放心下载使用! 3、本项目适合计算机相关专业(人工智能、通信工程、自动化、电子信息、物联网等)的高校学生、教师、科研工作者、行业从业者下载使用,可借鉴学习,也可直接作为毕业设计、课程设计、作业、项目初期立项演示等,也适合小白学习进阶,遇到问题不懂就问,欢迎交流。 4、如果基础还行,可以在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 5、不懂配置和运行,可远程教学 6、欢迎下载,沟通交流,互相学习,共同进步!

2025-07-15

基于C语言开发OpenXML的Word论文格式自动检查程序源码.zip

基于C语言开发OpenXML的Word论文格式自动检查程序源码.zip 毕业设计作品 【资源说明】 1、该项目是团队成员近期最新开发,代码完整,资料齐全,含设计文档等 2、上传的项目源码经过严格测试,功能完善且能正常运行,请放心下载使用! 3、本项目适合计算机相关专业(人工智能、通信工程、自动化、电子信息、物联网等)的高校学生、教师、科研工作者、行业从业者下载使用,可借鉴学习,也可直接作为毕业设计、课程设计、作业、项目初期立项演示等,也适合小白学习进阶,遇到问题不懂就问,欢迎交流。 4、如果基础还行,可以在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 5、不懂配置和运行,可远程教学 6、欢迎下载,沟通交流,互相学习,共同进步!

2025-07-03

使用MATLAB Simulink模型来控制直流电机速度-粒子群优化(PSO)算法调整PID控制器参数.zip

使用MATLAB Simulink模型来控制直流电机速度-粒子群优化(PSO)算法调整PID控制器参数.zip 这是一个使用MATLAB Simulink模型来控制直流电机速度的项目。该项目使用粒子群优化(PSO)算法来调整PID控制器的参数,以实现最佳的速度控制性能。 功能 PID控制器参数优化:使用PSO算法优化PID控制器参数,以获得最佳的速度控制性能。 直流电机仿真:模拟真实世界中直流电机的动力学特性,以确保速度控制的准确性。 可定制参数:用户可以轻松修改电机和控制器的设置,以进行实验和测试。 研究重点:适用于涉及电力驱动和控制系统优化的研究项目。 技术栈 MATLAB Simulink 【资源说明】 1、该项目是团队成员近期最新开发,代码完整,资料齐全,含设计文档等 2、上传的项目源码经过严格测试,功能完善且能正常运行,请放心下载使用! 3、本项目适合计算机相关专业(人工智能、通信工程、自动化、电子信息、物联网等)的高校学生、教师、科研工作者、行业从业者下载使用,可借鉴学习,也可直接作为毕业设计、课程设计、作业、项目初期立项演示等,也适合小白学习进阶,遇到问题不懂就问,欢迎交流。 4、如果基础还行,可以在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 5、不懂配置和运行,可远程教学 6、欢迎下载,沟通交流,互相学习,共同进步!

2025-06-30

基于MATLAB和SIMULINK的控制系统数字仿真大作业-互耦水槽液位控制的PID整定方法比较-matlab源码+报告.zip

基于MATLAB和SIMULINK的控制系统数字仿真大作业-互耦水槽液位控制的PID整定方法比较-matlab源码+报告 基于MATLAB和SIMULINK的控制系统数字仿真大作业,主要比较了不同的PID调谐方法在互耦水槽液位控制中的性能。 主要功能 分析互耦水槽液位控制系统的数学模型 比较不同的PID调谐方法,如Ziegler-Nichols法、内模控制法等 基于MATLAB和SIMULINK进行数字仿真,验证不同PID调谐方法的性能 【资源说明】 1、该项目是团队成员近期最新开发,代码完整,资料齐全,含设计文档等 2、上传的项目源码经过严格测试,功能完善且能正常运行,请放心下载使用! 3、本项目适合计算机相关专业(人工智能、通信工程、自动化、电子信息、物联网等)的高校学生、教师、科研工作者、行业从业者下载使用,可借鉴学习,也可直接作为毕业设计、课程设计、作业、项目初期立项演示等,也适合小白学习进阶,遇到问题不懂就问,欢迎交流。 4、如果基础还行,可以在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 5、不懂配置和运行,可远程教学 6、欢迎下载,沟通交流,互相学习,共同进步!

2025-06-30

机器学习的26个字母手语识别系统python实现源码+数据+使用说明文档(期末课设作业).zip

机器学习的26个字母手语识别系统python实现源码+数据+使用说明文档(期末课设作业).zip 使用机器学习的实时手语识别系统。它通过对手势图像进行分类来识别美国手语字母表中的26个字母。该系统使用卷积神经网络(CNN)模型进行训练和预测,并提供了实时预测功能,可以通过网络摄像头捕捉手势并实时显示识别结果。 准备和清理数据集 将数据集划分为训练集和测试集 构建CNN模型并进行训练 保存训练好的模型 评估模型的准确性 实时预测手势并显示识别结果 技术栈Python、OpenCV 【资源说明】 1、该项目是团队成员近期最新开发,代码完整,资料齐全,含设计文档等 2、上传的项目源码经过严格测试,功能完善且能正常运行,请放心下载使用! 3、本项目适合计算机相关专业(人工智能、通信工程、自动化、电子信息、物联网等)的高校学生、教师、科研工作者、行业从业者下载使用,可借鉴学习,也可直接作为毕业设计、课程设计、作业、项目初期立项演示等,也适合小白学习进阶,遇到问题不懂就问,欢迎交流。 4、如果基础还行,可以在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 5、不懂配置和运行,可远程教学 欢迎下载,学习使用!

2025-06-24

python智慧物流算法大赛回归预测与可视化系统源码+文档说明+设计文档.zip

python智慧物流算法大赛回归预测与可视化系统源码+文档说明+设计文档. 功能 数据预处理:对原始数据进行清洗和处理 特征工程:根据业务需求,对数据进行特征提取和工程 建模调参训练:尝试不同的机器学习模型,并进行调参优化 数据可视化:对分析结果进行可视化展示 技术栈 编程语言: Python 3.6 依赖库: urllib, BeautifulSoup, keras, numpy, matplotlib, seaborn, pandas 工作环境: Anaconda 智慧物流算法大赛简介: 根据包括货值、路程和油价等字段的数据集,对每趟货物运送的运价进行回归预测。 本项目为我的参赛代码,分为四个主要的部分:1.数据采集;2.数据预处理;3.特征工程;4.建模调参训练。 最终获得了大赛的二等奖。

2025-06-22

课程设计基于simulink中的PID控制器对球和梁系统进行稳定性和跟踪控制((含源码+说明).zip

基于simulink中的PID控制器对球和梁系统进行稳定性和跟踪控制((含源码+说明).zip SIMULINK中的PID控制器对球和梁系统进行稳定性和跟踪控制。项目首先分析了系统的物理和数学建模,检查了系统的可控性和平衡点的稳定性,然后尝试使用不同的方法进行控制,包括利用初始条件、设计PD控制器以及评估这些控制方法的性能。 功能 分析球和梁系统的物理和数学建模 检查系统的可控性和平衡点的稳定性 使用初始条件进行控制 设计PD控制器进行控制 评估不同控制方法的性能

2025-06-30

PPE检测告警项目-YOLOv8算法实时检测建筑工人是否佩戴安全帽、安全背心和口罩(含源码+模型+使用说明).zip

PPE检测告警项目_YOLOv8算法实时检测建筑工人是否佩戴安全帽、安全背心和口罩(含源码+模型+使用说明) [项目介绍] 旨在通过实时检测建筑工人是否佩戴安全帽、安全背心和口罩,来提高建筑工地的安全性。该项目使用了最先进的目标检测算法YOLOv8,可以实时检测工人是否佩戴安全装备,并在检测到未佩戴安全帽的情况下发送电子邮件警报。 【主要功能】 检测工人是否佩戴安全帽 检测工人是否佩戴安全背心 检测工人是否佩戴口罩 检测工地是否有人员存在 实时显示检测到的安全帽、背心、口罩和人员数量 在检测到未佩戴安全帽的情况下发送电子邮件警报,并附上相关图像 确保电子邮件发送过程不会影响视频流畅性 在视频画面右上角显示邮件发送成功的提示 python3.8、opencv 、pytorch

2025-06-23

基于MATLAB的建筑能耗建模系统含源码+设计报告(高分毕设项目).zip

基于MATLAB的建筑能耗建模系统含源码+设计报告(高分毕设项目).zip 主要功能 建立建筑物能源系统的数学模型,包括锅炉、管道、散热器、混合器、空调机组等多种元件 使用隐式求解方法解决系统的能量平衡方程 支持多个求解器并行计算不同水循环系统 提供了连接不同求解器的Bridge类 项目目标**:建立一个可配置的建筑能耗模型,模拟住宅或商用建筑在不同气候条件下的热能耗与用电动态,支持节能控制策略模拟。 应用背景 随着建筑能耗在全球总能耗中的占比不断提高,利用数学建模和计算机仿真技术对建筑热环境进行预测与优化显得尤为重要。该项目通过 MATLAB 平台构建简洁、可扩展的建筑能耗仿真环境,可用于研究: * 建筑围护结构对能耗的影响 * 加热、通风和空调系统(HVAC)策略优化 * 被动/主动节能控制策略 * 与外部天气数据的交互仿真(如 TMY3) 核心模型类(.m 文件): AirHeatExchanger.m, Boiler.m, Chiller.m, Pipe.m, Radiator.m, FanCoil.m, HeatExchanger.m, Mixer.m, Same.m 这些文件定义了热交换器、锅炉、冷水机组、管道、散热器、风机盘管、混合器等建筑能源系统组件的数学模型及热平衡方程。 控制与求解相关: SetpointController.m:HVAC 设置点控制器。 Solver.m:核心数值求解器,用于建立并求解系统线性方程组。 系统集成与桥接: Bridge.m:用于连接多个 solver 或不同流体系统之间的耦合关系。 Constant.m:定义恒定温度源或引用变量。 环境与区域: Zone.m:建筑空间(房间)模块,模拟热容、传热等。

2025-06-19

高分毕设-SiamFC目标跟踪系统Tensorflow实现含设计文档+项目说明.zip

高分毕设-SiamFC目标跟踪系统Tensorflow实现含设计文档+项目说明. 模块 说明 net.py 定义 SiamFC 的孪生卷积网络结构 tracker.py 追踪器主类,负责载入模型、初始化目标、计算响应图 train.py 训练脚本,包含样本生成、损失函数、模型保存 inference.py 评估脚本,支持视频可视化和帧间跟踪 dataset/ 数据预处理与加载(如 OTB 数据集) utils/ 工具函数:可视化、日志、参数加载等 训练流程设计 使用 ILSVRC 视频目标跟踪数据集 数据增强策略包括平移、缩放、随机裁剪 使用 SGD 优化器、soft margin loss 支持断点续训与模型保存 训练命令如下(以 bilylee 项目常见方式): bash python train.py --dataset_path ./data --model_save_path ./models 测试与可视化设计 测试流程读取视频帧序列 第一帧人工指定 bbox,后续自动推理跟踪框 提供帧间追踪响应图可视化、跟踪结果保存等功能 支持在 OTB 数据集测试性能指标(如 precision、success rate)

2025-06-18

基于Uni-app深度学习的农作物病虫害微信小程序图像识别系统+设计文档+部署运行教程.zip

基于Uni-app深度学习的农作物病虫害微信小程序图像识别系统+设计文档+部署运行教程 主要功能 提供农作物病虫害图像识别功能,可以快速诊断作物的病害情况。 提供病害信息查询,包括病害症状、预防措施等。 支持用户上传自己拍摄的作物图片进行识别。 技术栈 微信小程序框架: 使用了微信小程序的组件化开发模式。 云函数: 使用了华为云的ModelArts服务进行图像分类。 前端框架: 使用了ColorUI组件库实现UI界面。 [资源说明] 1、该项目是团队成员近期最新开发,代码完整,资料齐全,含设计文档等 2、上传的项目源码经过严格测试,功能完善且能正常运行,请放心下载使用! 3、本项目适合计算机相关专业(人工智能、通信工程、自动化、电子信息、物联网等)的高校学生、教师、科研工作者、行业从业者下载使用,可借鉴学习,也可直接作为毕业设计、课程设计、作业、项目初期立项演示等,也适合小白学习进阶,遇到问题不懂就问,欢迎交流。 4、如果基础还行,可以在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 5、不懂配置和运行,可远程教学 6、欢迎下载,沟通交流,互相学习,共同进步!

2025-06-17

基于Python+Socket编程实现的简单FTP服务器项目源码+运行说明(计算机网络期末大作业).zip

基于Python+Socket编程实现的简单FTP服务器项目源码+运行说明(计算机网络期末大作业).zip [期末大作业] 实现FTP服务器的基本功能,包括上传和下载文件 使用Python Socket编程实现服务器和客户端的通信 提供简单的命令行界面,用户可以通过输入命令来上传和下载文件 【快速开始】 计算机网络期末大作业,利用Python Socket编程实现一个简单的FTP服务器 解释器要求 Python >= 3.10 运行方式 终端运行 python .\PutServer.py 再在新终端运行 python .\GetServer.py 运行main.py python .\main.py [资源说明] 1、该项目是团队成员近期最新开发,代码完整,资料齐全,含设计文档等 2、上传的项目源码经过严格测试,功能完善且能正常运行,请放心下载使用! 3、本项目适合计算机相关专业(人工智能、通信工程、自动化、电子信息、物联网等)的高校学生、教师、科研工作者、行业从业者下载使用,可借鉴学习,也可直接作为毕业设计、课程设计、作业、项目初期立项演示等,也适合小白学习进阶,遇到问题不懂就问,欢迎交流。 4、如果基础还行,可以在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 5、不懂配置和运行,可远程教学 6、欢迎下载,沟通交流,互相学习,共同进步!

2025-06-16

3D图形和可视化的VTK示例集合-涵盖VTK的基本形状、高级形状、数据结构、输入输出、数据转换、可视化管道、交互式小部件以及与外部工具的集成等.zip

3D图形和可视化的VTK示例集合-涵盖VTK的基本形状、高级形状、数据结构、输入输出、数据转换、可视化管道、交互式小部件以及与外部工具的集成等.zip 一个用于探索3D图形和可视化的VTK(Visualization Toolkit)示例集合。它提供了各种Python脚本,涵盖了VTK的基本形状、高级形状、数据结构、输入输出、数据转换、可视化管道、交互式小部件以及与外部工具的集成等主题。这个项目旨在帮助开发者学习和掌握VTK的强大功能。 [主要功能] 提供丰富的VTK示例,涵盖从基础到高级的各种可视化主题 展示如何使用VTK进行3D图形和数据可视化 演示如何将VTK与其他工具(如Qt、Matplotlib)集成 包含计算流体动力学(CFD)相关的示例 技术栈 Python VTK (Visualization Toolkit)

2025-06-16

多尺度混合Mamba‑Transformer专家模型SST时序预测系统+说明设计文档.zip

多尺度混合Mamba‑Transformer专家模型SST时序预测系统+说明设计文档.zip 这个项目是一个用于长短期时间序列预测的多尺度混合Mamba-Transformer专家模型(SST)。该模型将时间序列分解为全局模式和局部变化,并利用Mamba作为长期全局模式专家,LWT作为短期局部变化专家,通过自适应路由器集成两者,实现了高效的长短期预测。 主要功能: 提出将时间序列分解为全局模式和局部变化的方法,并引入新的度量指标来精确量化时间序列的分辨率。 提出一种新的混合Mamba-Transformer专家架构SST,其中Mamba擅长捕捉长期全局模式,LWT擅长捕捉短期局部变化。 设计了一个长短期路由器,用于自适应地集成全局模式和局部变化。 SST具有线性复杂度O(L),在时间序列长度L上具有很好的可扩展性。

2025-06-16

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除