在本文中,我们将介绍一个使用 Python 和 PySpark 的完整机器学习 (ML) 管道示例。此管道包括数据加载、预处理、特征工程、模型训练和评估。
这里的主要思想是为您提供构建自己的 ML 管道的快速入门。我们将使用 Spark 功能来构建管道。PySpark 提供的 ML 库在处理大量数据时非常强大和高效。
PySpark ML 管道
以下是 PySpark ML Pipeline 的代码:
from pyspark.sql import SparkSession
from pyspark.ml import Pipeline
from pyspark.ml.feature import StringIndexer, VectorAssembler, StandardScaler
from pyspark.ml.classification import LogisticRegression
from pyspark.ml.evaluation import MulticlassClassificationEvaluator
# Initialize Spark session
spark = SparkSession.builder \
.appName("PySpark ML Pipeline") \
.getOrCreate()
# Load data
data_path = "path/to/your/data.csv" # Replace with your data file
df = spark.read.format("csv") \
.option("header", "true") \
.option("inferSchema", "true") \
.load(data_path)
# Show data schema
df.printSchema()
# Select features and target column
feature_cols = ["feature1", "feature2", "feature3"] # Replace with actual column names
target_col = "target" # Replace