天气预测是时间序列分析中最具挑战性的任务之一,本文提出了一种融合LSTM长期记忆与自注意力机制的创新模型,在气象预测准确率上实现了重大突破。 一、天气预测的挑战与创新方案 传统方法的局限性: ARIMA模型:无法捕捉非线性关系 单一LSTM:难以识别关键时间点 简单神经网络:忽略时间依赖性 创新解决方案: class WeatherLSTMAttention(nn.Module): def __init__(self, input_size