yolov5 deepsort 行人+车辆(检测 +计数+跟踪+测距)

# 功能 简介

img

添加图片注释,不超过 140 字(可选)

- 实现了局域的出/入 分别计数。

- 显示检测类别,ID数量。

- 默认是 南/北 方向检测,若要检测不同位置和方向,需要加以修改

- 可在 count_car/traffic.py 点击运行

- 默认检测类别:行人、自行车、小汽车、摩托车、公交车、卡车、船。

- 检测类别可在 objdetector.py 文件修改。

img

添加图片注释,不超过 140 字(可选)

# 代码运行

```bash
$ #code get------------>代码获取-------》---------------
```

因此repo包含weights及mp4等文件,若 git clone 速度慢,可直接下载zip

## 进入目录

```bash
$ cd unbox_yolov5_deepsort_counting
```

## 创建 python 虚拟环境

```bash
conda create -n deepsort python==3.8
```

激活虚拟环境

```bash
conda activate deepsort
```

升级pip

```bash
$ python -m pip install --upgrade pip
```

## 安装pytorch

根据你的操作系统、安装工具以及CUDA版本,在 PyTorch 找到对应的安装命令。我的环境是 ubuntu 18.04.5、pip、CUDA 11.0。

```bash
$ pip install torch==1.7.1+cu110 torchvision==0.8.2+cu110 torchaudio===0.7.2 -f https://download.pytorch.org/whl/torch_stable.html
```

img

添加图片注释,不超过 140 字(可选)

img

添加图片注释,不超过 140 字(可选)

安装软件包

```bash
$ pip install -r requirements.txt
```

demo.py 文件中,设置要检测的视频文件路径,默认为 ***'./video/test.mp4'*

capture = cv2.VideoCapture(‘./video/test.mp4’)

## 运行程序

```bash
python count.py
```

# demo代码

```bash
detector = Detector()

    # 打开视频
    capture = cv2.VideoCapture(VIDEO_PATH)

    while True:
        # 读取每帧图片
        _, im = capture.read()
        if im is None:
            break

        # 缩小尺寸
        im = cv2.resize(im, (width//2, height//2))

        list_bboxs = []
        # 更新跟踪器
        output_image_frame, list_bboxs = objtracker.update(detector, im)
        # 输出图片
        output_image_frame = cv2.add(output_image_frame, color_polygons_image)

        if len(list_bboxs) > 0:
            # ----------------------判断撞线----------------------
            for item_bbox in list_bboxs:
                x1, y1, x2, y2, _, track_id = item_bbox
                # 撞线检测点,(x1,y1),y方向偏移比例 0.0~1.0
                y1_offset = int(y1 + ((y2 - y1) * 0.6))
                # 撞线的点
                y = y1_offset
                x = x1
                if polygon_mask_blue_and_yellow[y, x] == 1:
                    # 如果撞 蓝polygon
                    if track_id not in list_overlapping_blue_polygon:
                        list_overlapping_blue_polygon.append(track_id)
                    # 判断 黄polygon list里是否有此 track_id
                    # 有此track_id,则认为是 UP (上行)方向
                    if track_id in list_overlapping_yellow_polygon:
                        # 上行+1
                        up_count += 1
                        print('up count:', up_count, ', up id:', list_overlapping_yellow_polygon)
                        # 删除 黄polygon list 中的此id
                        list_overlapping_yellow_polygon.remove(track_id)

                elif polygon_mask_blue_and_yellow[y, x] == 2:
                    # 如果撞 黄polygon
                    if track_id not in list_overlapping_yellow_polygon:
                        list_overlapping_yellow_polygon.append(track_id)
                    # 判断 蓝polygon list 里是否有此 track_id
                    # 有此 track_id,则 认为是 DOWN(下行)方向
                    if track_id in list_overlapping_blue_polygon:
                        # 下行+1
                        down_count += 1
                        print('down count:', down_count, ', down id:', list_overlapping_blue_polygon)
                        # 删除 蓝polygon list 中的此id
                        list_overlapping_blue_polygon.remove(track_id)
            # ----------------------清除无用id----------------------
            list_overlapping_all = list_overlapping_yellow_polygon + list_overlapping_blue_polygon
            for id1 in list_overlapping_all:
                is_found = False
                for _, _, _, _, _, bbox_id in list_bboxs:
                    if bbox_id == id1:
                        is_found = True
                if not is_found:
                    # 如果没找到,删除id
                    if id1 in list_overlapping_yellow_polygon:
                        list_overlapping_yellow_polygon.remove(id1)

                    if id1 in list_overlapping_blue_polygon:
                        list_overlapping_blue_polygon.remove(id1)
            list_overlapping_all.clear()
            # 清空list
            list_bboxs.clear()
        else:
            # 如果图像中没有任何的bbox,则清空list
            list_overlapping_blue_polygon.clear()
            list_overlapping_yellow_polygon.clear()
            
        # 输出计数信息
        text_draw = 'DOWN: ' + str(down_count) + \
                    ' , UP: ' + str(up_count)
        output_image_frame = cv2.putText(img=output_image_frame, text=text_draw,
                                         org=draw_text_postion,
                                         fontFace=font_draw_number,
                                         fontScale=0.75, color=(0, 0, 255), thickness=2)
        cv2.imshow('Counting Demo', output_image_frame)
        cv2.waitKey(1)

    capture.release()
    cv2.destroyAllWindows()

img

添加图片注释,不超过 140 字(可选)

```

# 结果展示

---------------

img

添加图片注释,不超过 140 字(可选)

img

添加图片注释,不超过 140 字(可选)

img

添加图片注释,不超过 140 字(可选)

# 总结



[外链图片转存中...(img-HcEkekNt-1730635027786)]





添加图片注释,不超过 140 字(可选)

[外链图片转存中...(img-H32SMj7y-1730635027787)]





添加图片注释,不超过 140 字(可选)

[外链图片转存中...(img-3EUAAYbT-1730635027787)]





添加图片注释,不超过 140 字(可选)

## # 总结

**各种追踪 测距 姿态估计 目标检测 计数 测速功能已实现,欢迎交流!**
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值