结果展示
去除图片中前景物体的步骤:
1.框选
2.分割
3.分离
4.去除
添加图片注释,不超过 140 字(可选)
添加图片注释,不超过 140 字(可选)
项目介绍
一键帮你剔除视频内的物体,现在只需要一句话。使用Meta的SAM技术,你现在可以让视频内任意物体消失!
# 特点
按照提示进行分割:只需输入“黑色狗”,您就可以将您的黑色狗分割出来;
**修复图像:**只需输入“消失的跑步者”,您的跑步者视频中的人物就会消失;
**针对视频处理:**由于SegAnythingPro使用提示和自动运行来处理视频,无需人工干预。
# 功能(Features):
***SAM 支持*:**SegAnythingPro支持SAM(Segmentation-Aware Modulation)损失函数,可以提高图像分割的质量和准确性。
***GDINO*:**SegAnythingPro使用GDINO(Generative DINO)框架进行图像生成,可以生成逼真的图像。
分割提示(**Prompt for detect):您可以使用提示(prompt)来指导图像分割任务,例如输入“黑色狗”来分割出图像中的黑色狗。
***检测与遮罩可视化*:**SegAnythingPro支持图像检测和遮罩可视化,可以帮助您理解分割模型是如何对不同区域进行分类和分割的。
***Swin 模型*:**SegAnythingPro采用Swin Transformer模型,具有较强的特征提取和图像分割能力。
*视频支持*:SegAnythingPro支持对视频进行处理和分割,可以处理连续帧的视频序列。
***LoRa 模型用于 SD(未来)*:**SegAnythingPro将引入使用LoRa模型进行语义分割任务的功能,以进一步提高效果。
**cv2 *图像处理*:**SegAnythingPro集成了cv2库,可以进行各种图像处理操作,例如调整大小、裁剪、旋转等。
*图像注意力遮罩(Image attention mask)*:SegAnythingPro可以生成图像的注意力遮罩,将模型关注的区域可视化出来。
***结合文字(Combine with Words)*:**SegAnythingPro能够结合文字描述和提示进行图像分割,提供更准确的结果。
***安全张量作为权重(safetensors as weights*):**SegAnythingPro在处理图像时使用安全张量(safetensors)作为权重,确保计算过程中的数据安全性。
代码安装
```bash
git clone myproject
pip install -r requirements.txt
```
```bash
cd GroundingDINO && pip install -e .
pip install -U alfred-py
# download weights
wget https://github.com/IDEA-Research/GroundingDINO/releases/download/v0.1.0-alpha/groundingdino_swint_ogc.pth
wget https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth
```
demo运行
```bash
python .\demo.py -i .\data\inpaint_demo.jpg -p 'dog'
```
ta\inpaint_demo.jpg -p ‘dog’