- 博客(833)
- 收藏
- 关注
原创 Dify之外的新选择?开源版Coze部署初体验,真香警告!
开源AI开发平台CozeStudio与CozeLoop初体验 字节跳动旗下AI平台Coze近期开源了CozeStudio和CozeLoop两款工具,采用Apache 2.0协议。CozeStudio提供一站式AIAgent开发环境,支持Prompt、RAG、Plugin等功能;CozeLoop则专注于AI开发全生命周期管理。部署需Docker Compose,建议使用干净系统以避免冲突。目前功能虽较商业版简化,但核心体验流畅,工作流等特性突出,社区潜力值得期待。开源版本为开发者提供了商业版平替方案,部署文档
2025-08-05 14:16:09
原创 举例子讲解Transformer Decoder层流程
本文通过一个极简模型(d_model=3)演示了纯Decoder架构(如GPT)如何生成句子"我很开心"中的"开心"一词。具体过程为:1)位置3的初始输入与位置编码结合;2)Masked Self-Attention只关注前文("我"、"很"),计算得到权重分配;3)经过残差连接和层归一化后,FFN网络将3维向量升维到6维再降回,强化语义特征;4)最终输出层计算词表概率,使"开心"以65%的概率被选中。整个过
2025-08-05 14:10:09
140
原创 大模型部署避坑指南:资源、速度与实战要点解析
【摘要】本文系统讲解了大模型部署的资源计算与优化方法,涵盖显存需求估算、生成速度计算及实用工具推荐。核心内容包括:1.显存优化三策略(量化压缩/梯度检查点/模型并行);2.推理与训练阶段的显存占用公式(模型参数×精度+KV缓存+激活值);3.生成速度指标(TTFT<1秒,TPOT<50毫秒)及加速方案;4.硬件选型建议(A100/H100集群适用于130亿+参数模型);
2025-08-05 14:07:06
56
原创 用coze搭建爆火火柴人心理学视频,一键生成爆款短视频
摘要:本文详细介绍利用Coze平台搭建火柴人心理学短视频生产流程的方法。流程包含6个核心环节:1)基于心理学关键词生成标题和文案;2)通过AI生成火柴人风格封面;3)根据文案内容分割分镜脚本;4)循环生成分镜图像和配音;5)批量合成视频片段;6)最终视频导出。系统采用DeepSeekV3模型,严格限定输出为黑白线条火柴人风格,强调内容精准性和风格统一性。该方案可实现心理学知识的可视化表达,适合短视频平台内容创作。(149字)
2025-08-05 13:55:38
69
原创 Langfuse:LLM 应用可观测利器
摘要:Langfuse是一个专为大语言模型(LLM)应用设计的开源可观测性平台,帮助开发者解决成本控制、性能优化和质量监控等核心问题。它提供全链路追踪、关键指标监控、质量评估和A/B测试等功能,支持与LangChain、LlamaIndex等主流框架集成。本文详细介绍Langfuse的本地部署方法,展示了如何将其集成到RAG系统中,并配合RAGAS评估框架实现"观测-评估-优化"闭环。通过实际案例演示,帮助开发者构建更透明、可靠和高效的LLM应用,将AI开发从"黑盒"
2025-08-05 13:37:22
290
原创 港科大发布「大模型越狱攻击」评估基准,覆盖37种、6大类别方法
GuidedBench的提出,为混乱的LLM越狱评估领域建立了一个清晰、公正、可信的标准,它不仅戳破了当前越狱攻击领域「高成功率」的泡沫,更重要的是,它推动整个社区从追求虚高的数字,转向对AI安全风险进行更细致、深入、有意义的探索。
2025-08-04 13:36:39
344
原创 停止提示词优化,开始系统设计:五种切实有效的智能体AI模式
摘要:本文分享了从基础提示词到智能体AI模式的进阶实践。作者最初误以为大语言模型只需完美提示词,后认识到结构化思维和系统设计的重要性。文中重点介绍了5种关键模式:1)反思模式让模型自我检查;2)工具使用模式连接现实数据源;3)反应模式实现思考-行动循环;4)规划模式分解复杂任务;5)多智能体协作模式。这些方法将LLM从不完美的组件转变为具备规划、调整和协作能力的智能系统。文章最后提供了构建研究助手的具体实施框架,强调真正的智能源自系统设计而非单一模型。
2025-08-04 13:29:04
518
原创 2025年机器学习十大算法全景解析:从理论到实践的深度指南
【AI时代10大核心算法演进】2025年机器学习算法呈现五大突破趋势:量子计算加速(随机森林速度提升百万倍)、实时流式处理(Flink实现每秒百万级数据聚类)、因果推断融合(结合DoWhy框架)、小样本学习(10样本达85%准确率)及边缘计算轻量化。典型应用包括:金融风控(线性回归预测准确率92.3%)、医疗诊断(逻辑回归敏感度96.8%)、智能制造(决策树减少年损失2000万)等,算法性能平均提升3-1000倍,推动各行业智能化转型。
2025-08-04 13:24:33
643
原创 Context7 MCP,让Cursor告别代码幻觉!
Context7是一个实时文档注入工具,能解决AI模型知识滞后问题。它通过MCP协议安装,支持1.4万个库的版本精准匹配和文档切片查询。使用时只需在问题后添加"usecontext7",系统就会自动拉取对应版本的文档。虽然目前免费,但需注意频繁调用会消耗资源,建议开启联网搜索作为备用方案。此外还推荐SequentialThinking和MCPFeedbackEnhanced等代码提效工具。
2025-08-04 13:21:49
455
原创 微软新研究:这40种工作最可能被AI取代
AI对职业影响研究:多维度分析揭示哪些岗位最易被替代 微软最新研究通过分析20万条AI对话数据,建立了一套AI适用性评分体系。研究发现,翻译、销售、程序员等"动脑型"职业受AI影响最大,其中翻译员的AI覆盖率和成功率均超80%。而护理、维修等体力劳动岗位AI适用性近乎为零。研究打破了"高薪工作更易被AI替代"的常规认知,发现职业薪酬与AI影响程度关联微弱,决定因素在于工作内容是否涉及信息处理。专家指出,AI更多是作为效率工具辅助工作而非完全替代,建议从业者关注如何将重
2025-08-04 13:17:30
461
原创 揭秘大模型的魔法:实现带可训练权重的自注意力机制
本文深入解析了Transformer模型中的自注意力机制,重点介绍了三个核心可训练权重矩阵(Wq, Wk, Wv)的设计原理。通过Python代码实现了一个完整的自注意力模块,使用模拟中文数据集训练模型并可视化注意力权重分布。文章揭示了自注意力机制如何动态捕捉词语间的语义关联,以及权重矩阵在语义关系学习中的作用。
2025-08-04 13:15:06
416
原创 Prevent Prompt Injection
本文探讨了大语言模型(LLM)应用中日益严重的PromptInjection(提示词注入)安全威胁。文章详细分析了PromptInjection的攻击原理,包括绕过指令、上下文污染、语言转换、编码隐藏等多种攻击手段,并强调了其可能导致的信息泄露、系统失控等严重后果。针对这些风险,文章评估了6种主流防御方案:系统提示词防护、LLM检测注入意图、专用安全检测模型(PromptGuard)、云服务商安全套件(ModelArmor)、NemoGuardrails框架和GuardrailsAI工具。通过模拟测试比较了
2025-08-04 13:10:06
666
原创 大模型本地部署3种方式
本文将介绍三种大模型本地化部署方法,适用于金融、医疗等对数据安全要求较高的场景。第一种使用Ollama+CherryStudio,通过官网下载安装后运行命令部署模型;第二种通过LMStudio下载安装并搜索指定模型完成部署;第三种结合Ollama+ChatboxAI,下载软件后选择本地模型API进行配置。三种方式均可实现DeepSeek-R1-Distill-Qwen-1.5B等大模型的本地化部署,满足数据闭环管理需求,避免敏感信息外泄。
2025-08-04 11:35:01
512
原创 Transformer终结者?Google DeepMind新架构实现2倍推理速度和一半内存占用
【摘要】Google DeepMind联合团队提出新型Mixture-of-Recursions(MoR)架构,突破Transformer固定计算深度的局限。MoR通过递归块和智能路由系统实现Token级自适应计算,简单词汇仅需1轮处理,复杂术语可递归多轮。关键技术包括多路性设计、两种路由策略和缓存优化,在参数效率、推理速度(提升2.06倍)和计算资源分配上显著优于传统Transformer。实验显示167M参数的MoR性能超越315M标准模型,且与MoE架构结合效果更佳。该研究标志着从规模驱动到效率驱动的
2025-08-04 11:30:11
712
原创 RAG 应用进阶指南:别再“一次性”加载了!教你构建可分离、可维护的动态 AI 知识库
摘要:本文介绍了一种进阶的RAG系统架构设计,将数据处理与AI应用解耦,实现知识库的动态管理。主要内容包括:1)构建独立的知识管理中心,支持文档增删改查和元数据管理;2)开发纯粹的AI应用端,实现知识库按需加载。该方法解决了传统RAG系统数据更新困难、维护复杂等问题,提供了可追溯、多租户支持的专业解决方案,使RAG系统从Demo升级为可产品化的成熟框架。教程包含详细代码示例,帮助开发者实现知识库的全生命周期管理。
2025-08-04 11:26:34
406
原创 谷歌把整个地球装进大模型!实时观测,按天更新
谷歌DeepMind推出AlphaEarthFoundations模型,突破全球测绘瓶颈。该模型通过多源数据融合和连续时间建模技术,解决了地球观测数据标注不足和标准不统一的难题。其创新的嵌入场模型能以10x10米精度分析地表,生成的64字节嵌入向量兼具全局与局部特征。在土地分类等任务中准确率显著优于传统方法,尤其在数据稀缺场景下表现突出。目前联合国粮农组织等50多个机构已应用其数据集进行生态系统监测和保护工作,标志着AI正成为重要的地球观测基础设施。
2025-08-01 17:50:11
675
原创 全新的AI模型带来更快速的漏洞检测方案
摘要:研究人员开发出新型AI模型White-Basilisk,仅2亿参数却在漏洞检测任务中超越大规模模型。该模型采用混合架构技术,能处理长达128000标记的代码序列,实现线性计算复杂度,且能耗仅为大型模型的1/100。其紧凑设计支持单GPU运行,适合集成到开发环境或CI/CD流程中。目前主要支持C/C++代码,团队正扩展语言支持并提升模型可解释性。这项技术为资源有限的安全团队提供了高效实用的AI安全工具选择。
2025-08-01 17:45:35
549
原创 一文弄懂用Go实现MCP服务:从STDIO到Streamable HTTP的完整实现
MCP(Model Context Protocol)是Anthropic推出的开放标准,旨在为大型语言模型提供统一的外部工具和数据源访问接口。该协议采用客户端-服务器架构,通过JSON-RPC 2.0进行通信,支持三种传输方式(STDIO、SSE和Streamable HTTP),适用于不同应用场景。MCP的核心功能包括工具调用、数据资源访问和参数化提示词使用,使AI能够动态获取外部数据而非局限于静态知识库。mcp-sdk-go实现了完整的MCP协议栈,采用分层设计,提供清晰的接口抽象和性能优化,为开发者
2025-08-01 17:43:27
654
原创 LangGraph + MCP + Ollama 实战教程:打造强大的多智能体聊天机器人
《模型上下文协议(MCP)在AI开发中的实践应用》 MCP作为新兴的AI开放协议,正在改变智能体开发方式。本教程展示了如何结合LangGraph、MCP和Ollama构建多智能体聊天机器人。MCP通过标准化接口解决AI工具连接难题,相比传统函数调用,它赋予AI更灵活的工具发现和组合能力。文章详细解析了技术架构:使用LangGraph管理工作流,MCP实现工具标准化接入,以及异步处理机制确保系统响应。核心模块包括智能体逻辑(Agent.py)、聊天节点(Nodes.py)和工具服务器(Server.py),支
2025-07-31 16:55:22
561
原创 四大主流AI Agent框架选型梳理
摘要:本文对比2025年7月四大AIAgent框架:微软AutoGen(代码生成标杆,需API封装)、CrewAI(低代码原型首选但并发弱)、LangGraph(状态机驱动适合金融/医疗)和Magnetic-One(演示级工具非生产用)。选型建议:AutoGen适合企业级开发,CrewAI快速原型,LangGraph处理复杂流程,Magnetic-One仅限演示。各框架在技术复杂度、应用场景和部署要求上存在显著差异,开发者需根据项目实际需求选择。(149字)
2025-07-31 16:47:52
932
原创 深度解析AI Agent:从概念、原理到构建模式,一文彻底搞懂
AIAgent深度解析:大模型的"感官与四肢" AIAgent作为连接大模型与现实世界的桥梁,通过整合GPT-4等大模型与各类工具,实现了感知和改变外部环境的能力。核心运行模式包括: ReAct模式:通过"思考-行动-观察"的循环流程,Agent能自主完成任务。系统提示词是关键,包含职责描述、示例、工具列表等要素,指导模型按步骤执行。 Plan and Execute模式:先规划整体步骤,再动态执行调整。包含计划模型、重规划模型和执行Agent三个模块,通过循环优化实
2025-07-31 16:39:12
957
原创 大模型性能压测利器:解析vLLM推理服务压测工具
文章摘要: 本文介绍了一个专为vLLM推理服务设计的性能压测工具,解决了大模型性能评估中指标单一、场景受限等痛点。该工具具备六大关键性能指标监测能力,支持批量测试、智能结果管理和可视化报告生成。通过模块化架构设计,工具可灵活扩展适配不同推理框架。实际测试案例展示了工具在DeepSeek-R1模型上的应用效果,包括多维度性能分析和自动化报告生成。该工具显著提升了压测效率,从手工测试数小时缩短至分钟级,同时支持性能基线建立和历史对比,为模型优化提供数据支撑。项目已开源,助力大模型性能评估科学化。
2025-07-31 16:31:47
712
原创 让 Gemini CLI 跑在你的私有大模型上
本文介绍了如何将Google开源的GeminiCLI工具改造为支持本地LLM的轻量级客户端。通过分析GeminiCLI的架构设计,重点实现了以下改造:1) 移除身份验证功能;2) 新增OpenAI兼容接口支持;3) 修改创建者逻辑以适配本地模型。文章详细说明了代码修改过程,包括ContentGenerator接口实现、认证类型添加、验证逻辑调整等关键步骤,并指出需要注意的类型转换和配置文件优先级问题。改造后的工具可无缝对接Ollama、vLLM等本地LLM服务,充分体现了GeminiCLI优秀的架构设计和扩
2025-07-31 16:22:44
741
原创 OpenAI的“阳谋”:ChatGPT不想再当你枪手了
OpenAI推出的ChatGPT StudyMode标志着AI教育的重要变革,从"答案提供者"转变为"学习引导者"。这一模式通过提问式互动引导学生思考,在STEM领域展现出显著效果,据测试可提升68%的学习效率。然而,它面临自制力需求、回答可靠性以及人文社科应用的局限性。这场教育实验的核心价值在于推动"授人以渔"的学习方式,其最终成功取决于技术迭代和用户适应性。尽管存在不足,StudyMode仍代表了AI推动教育公平的重要尝试,为个性化学习提供了全
2025-07-31 16:14:09
481
原创 RAG 升级之路:如何让问答机器人真正 “智能” 起来
摘要:传统RAG模式存在数据处理粗糙、知识库未分类、对话历史理解脱节和用户意图识别不清等问题。CloudCanalRAG通过查询重构、扩展、路由和智能检索等优化,实现了从"检索驱动"到"理解驱动"的转变。该系统能精准理解模糊提问,关联对话历史,定位相关模块,并过滤无关信息,最终生成结构化提示词确保回答准确性。实际应用中,该方案显著提升了复杂场景下的问答准确性,为企业级智能问答提供了可落地的技术方案。
2025-07-31 16:08:41
571
原创 大模型中的嵌入向量
本文介绍了词嵌入(Embedding)在大语言模型中的核心作用。文章首先阐述文本需通过Embedding转为张量才能进行数学运算,并解释了标量、向量、矩阵等张量概念。重点分析了三种关键嵌入方式:Word Embedding将token转为向量;Position Embedding通过位置编码解决Transformer模型忽略词序的问题;Segment Embedding用于区分不同句子或段落。文章通过具体示例展示了三种嵌入的融合计算过程,并指出Embedding技术将离散语言转化为连续数学表示,使模型能够计
2025-07-30 17:59:49
720
原创 Agentic AI 与 AI Agent:五大差异及其重要性
AI智能体与AgenticAI的核心差异在于:1)应用范围:智能体侧重特定任务处理(如Siri设提醒),自主智能专注于复杂决策系统构建;2)能力架构:前者基于预设程序执行(如客服机器人),后者强调自主学习和动态适应(如IT支持系统);3)协同层级:多个智能体组合可形成指数级增长的智能体系统(如客户服务三模块协同),而Agentic架构则通过底层框架实现跨系统协调。企业需根据82%的技术采用率,区分任务自动化(智能体)与战略转型(自主智能)的不同需求,避免3-5年内的AI投资方向性错误。
2025-07-30 17:46:01
758
原创 ReAct: 减少 LLM 幻觉,提升准确度
ReAct框架通过交替生成推理轨迹和执行任务来解决LLM推理与执行分离的问题。它允许LLM调用外部工具(如计算、维基百科搜索等)获取真实信息,减少幻觉并提高响应准确性。ReAct通过输出推理过程和执行操作增强可解释性,但需设置最大迭代次数防止无限循环。相比单次功能调用,ReAct通过多次迭代收集更全面的外部信息,使LLM决策更可靠。
2025-07-30 17:42:50
614
原创 消灭技术债务:CodeLogic复杂的AI解决方案
摘要:CodeLogic CEO Edwin Gnichtel在开发者大会上指出,Agile开发模式加速了技术债务积累,过时框架和微服务滥用加剧问题。其公司推出结合AI的解决方案:通过构建知识图谱分析代码依赖,使用多模型系统(包括LLM和MCP服务器)实现"检索增强生成",自动识别风险并生成JIRA工单。该系统还能预测变更影响,帮助开发者减少新债务产生。核心创新在于AI能自主编写复杂提示并闭环处理技术债务,但最终仍需人工审核。(149字)
2025-07-29 15:00:08
951
原创 多模态大模型,真的「懂」世界吗?——揭秘 MLLM 的核心知识缺陷
摘要:加州大学圣地亚哥分校发表在ICML2025的研究指出,多模态大模型(MLLM)在基础认知任务上存在显著缺陷。研究构建了CoreCognition评估体系,通过1503个图像-问题对测试230款模型,发现:1)模型缺乏物体恒存、空间知觉等基础认知能力;2)高级推理能力与基础认知不相关;3)扩大模型规模无法改善基础认知;4)系统推理模型也无优势。研究提出的ConceptHacking方法显示,模型往往依赖认知捷径而非真正理解。这表明当前AI发展路径难以实现类人智能,未来需在预训练中显式注入核心认知能力。
2025-07-29 14:56:17
708
原创 大模型学习比较-优化提示词改善答疑机器人回答质量
大模型工作流程与优化策略解析 本文系统介绍了大模型的工作机制和优化方法。核心流程包括:输入文本分词化、向量化、推理循环生成输出,通过temperature、top_p等参数控制生成内容的随机性。重点阐述了RAG(检索增强生成)技术在扩展知识库中的应用,包括文档解析、切片、向量化存储和检索生成三阶段优化策略。针对多轮对话场景,提出了基于历史对话改写query的解决方案。文章还详细分析了提示词工程优化技巧,包括要素框架构建、自动优化工具和模板设计。最后介绍了智能体系统的实现,涵盖工具管理、记忆模块和多智能体协作
2025-07-29 14:53:16
1022
原创 基础图谱增强检索生成(GraphRAG)——智能代理式 RAG
智能代理式RAG(AgenticRAG)是一种拥有多种检索代理的系统,用于智能检索回答用户问题所需的数据。系统包含三大核心组件:检索器路由器(选择最适合的检索器)、检索器代理(执行实际数据检索)和答案评判器(验证答案准确性)。通过大型语言模型(LLM)的辅助,系统能根据问题类型选择最佳检索策略,支持从向量相似度搜索到结构化查询等多种方式。智能代理式RAG特别适合多源异构数据场景,通过逐步添加专用检索器持续优化性能。实现时需注意LLM的工具调用能力、参数描述准确性以及答案完整性验证机制,确保系统输出的可靠性和
2025-07-29 14:47:25
822
原创 机器学习:使用LSTM训练情感分析模型
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;至此,根据训练集训练的模型保存完毕。第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
2025-07-29 14:30:31
698
原创 Function Call 是啥?MCP又是啥?
本文探讨了大型语言模型(LLM)的本质和使用方式。LLM本质上是基于数学运算的人工神经网络,通过预测下一个token的迭代过程生成内容。文章指出LLM存在"幻觉"问题,可能输出不准确信息。为解决这一问题,介绍了两种调用外部工具的方法:Function Call(需要OpenAI API支持)和提示词模板(适合普通用户)。还提出了Model Context Protocol(MCP)作为规范使用外部工具的协议。最后展望了Agent的潜力,即通过LLM推理、任务规划和调用工具来自主完成复杂任
2025-07-29 14:26:46
743
原创 从零开始:构建简易 MCP 系统全攻略
本文介绍了如何从零开始构建一个简易的模型上下文协议(MCP)系统。MCP是一种标准化协议,旨在帮助大型语言模型(LLMs)高效地与外部工具和上下文提供者通信。文章详细阐述了MCP系统的架构设计,包括三个关键角色:MCPHost(交互入口)、MCPClient(协议转换层)和MCPServer(对接数据源/工具)。采用JSON-RPC 2.0协议,支持Stdio和HTTP+SSE两种传输模式。通过Node.js实现了一个完整的MCP服务器,包含请求/响应类型定义、工具管理器和上下文提供者管理器等核心组件。该系
2025-07-29 14:18:22
959
原创 首次结合RL与SFT各自优势,动态引导模型实现推理⾼效训练
自从 DeepSeek-R1 问世后,以 GRPO 为代表的强化学习算法一度成为大模型后训练的热点,相较于 SFT,被认为能带来更强的模型泛化能力。GHPO 不仅以一种巧妙地方式缓解了 RLVR 训练奖励信号稀疏带来的训练不稳定问题,同时实现了 on-policy 强化学习与模仿学习的自适应调整,为社区提供重新看待 SFT 与 RL 的视角以及提供两者未来深度融合的可能性,助力人类进一步探索人工智能本质。
2025-07-28 15:13:08
817
原创 Prompt Engineering vs Vibe Coding vs Context Engineering
**摘要:**提示工程、氛围编程和上下文工程是三种AI辅助开发的关键技术。提示工程通过优化单次指令(如角色设定、输出格式)提升模型输出质量,适用于代码生成等简单任务。氛围编程强调开发者与AI的迭代协作(如通过AI-IDE生成并测试代码),降低开发门槛但可能增加技术债务。上下文工程通过动态整合多源信息(如RAG、工具调用)处理复杂任务,解决知识截止和幻觉问题。三者呈现从静态指令到动态协作的演进趋势,开发者需根据任务复杂度选择合适方法,未来上下文工程将成为复杂系统的核心技术。
2025-07-28 15:07:00
929
原创 字节跳动刚把自己招牌AI Agent开源了,可商用、超6000颗星
【摘要】扣子(Coze)是字节跳动推出的开源AIAgent开发平台,提供可视化一站式开发环境,支持无代码/低代码开发。平台集成最新大模型、工具和多种开发框架,内置上百个行业模板(如客服、营销等),支持快速构建智能体并一键发布至主流平台。开发者可通过拖拽式操作配置变量、数据库、记忆等功能,还能深度定制工作流和业务逻辑。开源版本采用Golang+React技术栈,提供模型服务、智能体构建、API集成等完整功能模块,适合不同技术水平的开发者快速实现AI应用商业化落地。
2025-07-28 15:04:43
324
原创 协同 RAG-Reasoning:让大模型边想边查的“深度研究”范式
《从幻觉到协同:大模型检索与推理的智能跃迁》 本文系统梳理了大型语言模型(LLM)从静态RAG到协同RAG-Reasoning的技术演进路径。针对LLM的知识幻觉与推理局限,研究者提出动态交互的协同系统:通过检索与推理的迭代循环(如IRCoT、DeepResearcher),实现知识精准定位与逻辑深度验证。文章对比三类框架(传统静态RAG→单向增强→协同系统),详解树式/图式推理工作流与多智能体协作策略,并给出NQ、HotpotQA等基准测试的量化评估。最后指出四大实践陷阱(如链式方法在多跳任务中的失效)和
2025-07-28 14:49:19
449
原创 Coze智能体本地部署保姆级教程
AI智能体开发平台Coze(扣子)宣布开源,支持本地部署。文章详细介绍了Windows系统下的部署步骤:1)安装Docker环境;2)克隆GitHub项目;3)配置大模型服务(以火山方舟为例);4)通过Docker启动服务。针对Windows特有的Elasticsearch报错提供了解决方案(修改文件换行符)。虽然开源版本功能有所精简,但为开发者提供了自主开发基础,且本地部署适合新手练习,解决了在线版积分限制问题。项目采用Apache2.0协议开源,支持自定义工作流开发。
2025-07-28 14:40:45
1884
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人