源码:
「yolov11安全帽检测网页版(HTML+Fastapi)」
链接:https://pan.quark.cn/s/6fcb4556215e链接:https://pan.quark.cn/s/6fcb4556215e
链接:https://pan.quark.cn/s/6fcb4556215e
快速开始
1、双击打开【yolov11车牌识别网页.html】即可看见网页2、安装Python3.9以上的解释器
3、下载Python的第三方库
pip install fastapi uvicorn ultralytics opencv-python-headless pillow numpy pydantic paddlepaddle paddleocr
4、使用 "python main.py" 命令直接运行此服务前端系统(Vue.js + Element-UI)
- 可以绘制中文标签,自定义标签颜色
- 支持上传 JPG/PNG 图片,显示原图与检测结果对比
- 上传本地 MP4 等格式视频,实时显示原始视频与检测后的视频帧
- 支持播放 / 暂停控制、检测状态监控(连接状态、置信度阈值调整)
系统演示
- 图片检测流程:
- 上传图片 → 选择模型 → 调整参数 → 点击检测 → 显示标注结果。
- 视频检测流程:
- 上传视频 → 点击开始检测 → 实时显示原始视频与检测帧 → 支持暂停 / 继续 / 停止。
- 图片检测:
- 接收 Base64 编码图片,通过 YOLO 检测目标(车辆、车牌)。
- 对检测到的车牌区域调用 PaddleOCR 识别文字,并在原图标注结果。
技术栈
- 框架:Vue.js 2.x(响应式数据驱动)。
- UI 组件:Element-UI(提供菜单、按钮、滑块等组件)。
- 通信:WebSocket(实时传输视频帧与检测结果)。
- 工具:HTML5
<video>
和<canvas>
(视频播放与帧抓取)。
本项目是基于 Vue.js + Element-UI 前端框架和 FastAPI 后端框架开发的安全帽识别系统,支持图片和视频的实时目标检测。系统通过 YOLOv8 实现目标检测
用户交互
- 图片预览:支持弹窗预览检测结果,支持鼠标缩放和平移(基于 Canvas 实现)。
- 状态反馈:通过 Element-UI 的消息提示(
$message
)和标签(el-tag
)显示连接状态、检测进度和错误信息。(2) 参数配置
- 模型选择:支持切换不同 YOLO 模型
- 动态调参:通过滑块实时调整置信度阈值(Confidence)和交并比阈值(IoU),影响检测结果的灵敏度。
总结
《YOLOv11安全帽检测网页版》是一个基于Vue.js+Element-UI前端和FastAPI后端的智能检测系统。该系统支持图片/视频上传检测,通过YOLOv8模型实现目标识别,并集成PaddleOCR进行文字识别。主要功能包括:可视化参数配置(置信度/IoU阈值调整)、实时视频帧检测、检测结果对比展示、状态监控等。技术栈涵盖WebSocket通信、HTML5视频处理、Canvas绘图等。用户只需安装Python环境及依赖库,即可通过网页界面便捷地进行安全帽检测。系统提供完整的图片/视频检测流程