C++进阶:5_哈希

哈希

一.unordered系列关联式容器

在C++98中,STL提供了底层为红黑树结构的一系列关联式容器,在查询时效率可达到 l o g 2 N log_2 N log2N,即最差情况下需要比较红黑树的高度次,当树中的节点非常多时,查询效率也不理想。最好的查询是,进行很少的比较次数就能够将元素找到,因此在C++11中,STL又提供了4个
unordered系列的关联式容器,这四个容器与红黑树结构的关联式容器使用方式基本类似,只是其底层结构不同,本文中只对unordered_map和unordered_set进行介绍,unordered_multimap和unordered_multiset可查看文档介绍。

1. unordered_map

(1).unordered_map的文档介绍

unordered_map在线文档说明

  1. unordered_map是存储<key, value>键值对的关联式容器,其允许通过keys快速的索引到与其对应的value。
  2. 在unordered_map中,键值通常用于惟一地标识元素,而映射值是一个对象,其内容与此键关联。键和映射值的类型可能不同。
  3. 在内部,unordered_map没有对<kye, value>按照任何特定的顺序排序, 为了能在常数范围内找到key所对应的value,unordered_map将相同哈希值的键值对放在相同的桶中。
  4. unordered_map容器通过key访问单个元素要比map快,但它通常在遍历元素子集的范围迭代方面效率较低。
  5. unordered_maps实现了直接访问操作符(operator[]),它允许使用key作为参数直接访问value。
  6. 它的迭代器至少是前向迭代器。
(2).unordered_map的接口说明
  1. unordered_map的构造

    image-20250505010633605

  2. unordered_map的容量

    image-20250505010702607

  3. unordered_map的迭代器

    image-20250505010737160

  4. unordered_map的元素访问

    image-20250505010809909

  5. unordered_map的查询

    image-20250505010844624

    注意:unordered_map中key是不能重复的,因此count函数的返回值最大为1

  6. unordered_map的修改操作

    image-20250505010943535

  7. unordered_map的桶操作

    image-20250505011009764
    在这里插入图片描述
    在这里插入图片描述

2. unordered_set

参见 unordered_set在线文档说明

3. 在线OJ

重复n次的元素

class Solution {
public:
int repeatedNTimes(vector<int>& A) {
     size_t N = A.size()/2;
     // 用unordered_map统计每个元素出现的次数
     unordered_map<int, int> m;
     for(auto e : A)
         m[e]++;
     
     // 找出出现次数为N的元素
     for(auto& e : m)
     {
         if(e.second == N)
             return e.first;
     }
 }
};

两个数组的交集I

class Solution {
public:
    vector<int> intersection(vector<int>& nums1, vector<int>& nums2) {

        // 用unordered_set对nums1中的元素去重
        unordered_set<int> s1;
        for (auto e : nums1)
            s1.insert(e);
        // 用unordered_set对nums2中的元素去重
        unordered_set<int> s2;
        for (auto e : nums2)
            s2.insert(e);
        // 遍历s1,如果s1中某个元素在s2中出现过,即为交集
        vector<int> vRet;
        for (auto e : s1)
        {
            if (s2.find(e) != s2.end())
                vRet.push_back(e);
        }
        return vRet;
    }
};

两个数组的交集II

存在重复元素

两句话中不常见的单词

二.底层结构

unordered系列的关联式容器之所以效率比较高,是因为其底层使用了哈希结构。

1. 哈希概念

顺序结构以及平衡树中,元素关键码与其存储位置之间没有对应的关系,因此在查找一个元素时,必须要经过关键码的多次比较。顺序查找时间复杂度为O(N),平衡树中为树的高度,即O( l o g 2 N log_2 N log2N),搜索的效率取决于搜索过程中元素的比较次数。

理想的搜索方法:可以不经过任何比较,一次直接从表中得到要搜索的元素。
如果构造一种存储结构,通过某种函数(hashFunc)使元素的存储位置与它的关键码之间能够建立一一映射的关系,那么在查找时通过该函数可以很快找到该元素。

当向该结构中:

  • 插入元素
    根据待插入元素的关键码,以此函数计算出该元素的存储位置并按此位置进行存放

  • 搜索元素
    对元素的关键码进行同样的计算,把求得的函数值当做元素的存储位置,在结构中按此位置取元素比较,若关键码相等,则搜索成功

  • 查找的方式与插入的方式相同,根据哈希函数依次看查找的与表中的相不相等;
    从映射位置按规则开始查找,直到遇到空,才能确定找不到.

该方式即为哈希(散列)方法,哈希方法中使用的转换函数称为哈希(散列)函数,构造出来的结构称为哈希表(Hash Table)(或者称散列表)

例如:数据集合**{1,7,6,4,5,9};**

哈希函数设置为:hash(key) = key % capacity; capacity为存储元素底层空间总的大小。

image-20250506213523668

用该方法进行搜索不必进行多次关键码的比较,因此搜索的速度比较快

问题:按照上述哈希方式,向集合中插入元素44,会出现什么问题?

2. 哈希冲突

对于两个数据元素的关键字 k i k_i ki k j k_j kj(i != j),有 k i k_i ki != k j k_j kj,但有:Hash( k i k_i ki) == Hash( k j k_j kj),即:不同关键字通过相同哈希哈数计算出相同的哈希地址,该种现象称为哈希冲突或哈希碰撞。

把具有不同关键码而具有相同哈希地址的数据元素称为“同义词”。

发生哈希冲突该如何处理呢?

3. 哈希函数

引起哈希冲突的一个原因可能是:哈希函数设计不够合理。
哈希函数设计原则:

  • 哈希函数的定义域必须包括需要存储的全部关键码,而如果散列表允许有m个地址时,其值域必须在0到m-1之间
  • 哈希函数计算出来的地址能均匀分布在整个空间中
  • 哈希函数应该比较简单

常见哈希函数

  1. 直接定址法–(常用)

用key的值映射一个绝对位置或者相对位置

取关键字的某个线性函数为散列地址:Hash(Key)= A*Key + B
优点:简单、均匀、快、 没有冲突
缺点:需要事先知道关键字的分布情况,只适合范围相对集中
使用场景:适合查找比较小且连续的情况
面试题:字符串中第一个只出现一次字符

  1. 除留余数法–(常用)

key模表的大小N以后,都可以映射到一个表中位置

设散列表中允许的地址数为m,取一个不大于m,但最接近或者等于m的质数p作为除数,
按照哈希函数:Hash(key) = key% p(p<=m),将关键码转换成哈希地址

  1. 平方取中法–(了解)
    假设关键字为1234,对它平方就是1522756,抽取中间的3位227作为哈希地址;
    再比如关键字为4321,对它平方就是18671041,抽取中间的3位671(或710)作为哈希地址
    平方取中法比较适合:不知道关键字的分布,而位数又不是很大的情况

  2. 折叠法–(了解)
    折叠法是将关键字从左到右分割成位数相等的几部分(最后一部分位数可以短些),然后将这几部分叠加求和,并按散列表表长,取后几位作为散列地址。
    折叠法适合事先不需要知道关键字的分布,适合关键字位数比较多的情况

  3. 随机数法–(了解)
    选择一个随机函数,取关键字的随机函数值为它的哈希地址,即H(key) = random(key),其中random为随机数函数。
    通常应用于关键字长度不等时采用此法

  4. 数学分析法–(了解)
    设有n个d位数,每一位可能有r种不同的符号,这r种不同的符号在各位上出现的频率不一定相同,可能在某些位上分布比较均匀,每种符号出现的机会均等,在某些位上分布不均匀只有某几种符号经常出现。可根据散列表的大小,选择其中各种符号分布均匀的若干位作为散列地址。例如:

image-20250506214859630

假设要存储某家公司员工登记表,如果用手机号作为关键字,那么极有可能前7位都是 相同的,那么我们可以选择后面的四位作为散列地址,如果这样的抽取工作还容易出现 冲突,还可以对抽取出来的数字进行反转(如1234改成4321)、右环位移(如1234改成4123)、左环移位、前两数与后两数叠加(如1234改成12+34=46)等方法。

数字分析法通常适合处理关键字位数比较大的情况,如果事先知道关键字的分布且关键字的若干位分布较均匀的情况

注意:哈希函数设计的越精妙,产生哈希冲突的可能性就越低,但是无法避免哈希冲突

4. 哈希冲突解决

解决哈希冲突两种常见的方法是:闭散列和开散列

(1).闭散列

**闭散列:也叫开放定址法,当发生哈希冲突时,如果哈希表未被装满,说明在哈希表中必然还有空位置,那么可以把key存放到冲突位置中的“下一个” 空位置中去。**即:按规则去其他位置找一个空的位置存储。那如何寻找下一个空位置呢?

①.线性探测

image-20250506215155278

比如2.1中的场景,现在需要插入元素44,先通过哈希函数计算哈希地址,hashAddr为4,因此44理论上应该插在该位置,但是该位置已经放了值为4的元素,即发生哈希冲突。

线性探测:从发生冲突的位置开始,依次向后探测,直到寻找到下一个空位置为止。

  • 插入

    • 通过哈希函数获取待插入元素在哈希表中的位置

    • 如果该位置中没有元素则直接插入新元素,如果该位置中有元素发生哈希冲突,使用线性探测找到下一个空位置,插入新元素

      image-20250506215333353

  • 删除
    采用闭散列处理哈希冲突时,不能随便物理删除哈希表中已有的元素,若直接删除元素会影响其他元素的搜索。比如删除元素4,如果直接删除掉,44查找起来可能会受影响。因此线性探测采用标记的伪删除法来删除一个元素。即:每个位置给一个状态标记

    // 哈希表每个空间给个标记
    // EMPTY此位置空, EXIST此位置已经有元素, DELETE元素已经删除
    enum State{EMPTY, EXIST, DELETE};
    

线性探测的实现

#pragma once
#include<vector>
#include<iostream>

using namespace std;

template<class K>
struct HashFunc
{
	size_t operator ()(const K& key)
	{
		return (size_t)key;
	}
};

//特化string(string做key比较常见,库里面也实现了string转int的仿函数.
template<>
struct HashFunc<string>
{
	size_t operator ()(const string& key)
	{
		size_t hash = 0;
		for (auto e : key)
		{
			hash *= 31;//一种算法,使得即使相同的字符组成的句子(如:abc,cba),key转化后的整型值(hash)也不一样
			hash += e;
		}
		return hash;
	}
};

// 一.闭散列(开放定值法):线性探测
namespace open_address
{
	enum State
	{
		EXIST,
		EMPTY,
		DELETE
	};

	template<class K, class V>
	struct HashData
	{
		pair<K, V> _kv;
		State _state = EMPTY;
	};

	template<class K, class V, class Hash = HashFunc<K>>
	class HashTable
	{
	public:
		HashTable()
		{
			_tables.resize(10);
		}

		bool Insert(const pair<K, V>& kv)
		{
			if (Find(kv.first))
			{
				return false;
			}

			//扩容
			if (_n * 10 / _tables.size() >= 7)//int除int得不到0.7
			{
				//不能直接扩容;size变了,映射关系就变了.
				//遍历旧表,将所有数据映射到新表.
				HashTable<K, V, Hash> newHT;
				newHT._tables.resize(_tables.size() * 2);
				for (size_t i = 0; i < _tables.size(); i++)
				{
					if (_tables[i]._state == EXIST)
					{
						newHT.Insert(_tables[i]._kv);
					}
				}
				_tables.swap(newHT._tables);
			}

			Hash hs;
			//不能%capacity,capacity的位置不能直接放值.
			size_t hashi = hs(kv.first) % _tables.size();
			while (_tables[hashi]._state == EXIST)
			{
				++hashi;
				hashi %= _tables.size();
			}

			_tables[hashi]._kv = kv;
			_tables[hashi]._state = EXIST;
			++_n;

			return true;
		}

		HashData<K, V>* Find(const K& key)
		{
			Hash hs;
			size_t hashi = hs(key) % _tables.size();
			while (_tables[hashi]._state != EMPTY)
			{
				if (_tables[hashi]._state == EXIST
					&& _tables[hashi]._kv.first == key)
				{
					return &_tables[hashi];
				}
				++hashi;
				hashi %= _tables.size();
			}
			return nullptr;
		}

		bool Erase(const K& key)
		{
			HashData<K, V>* ret = Find(key);
			if (ret == nullptr)
			{
				return false;
			}
			else
			{
				ret->_state = DELETE;
				return true;
			}
		}

	private:
		vector<HashData<K, V>> _tables;
		size_t _n = 0;//表中存储数据的个数
	};
}

思考:哈希表什么情况下进行扩容?如何扩容?

image-20250506220124450

线性探测优点:实现非常简单;

线性探测缺点:**一旦发生哈希冲突,所有的冲突连在一起,容易产生数据“堆积”,即:不同关键码占据了可利用的空位置,使得寻找某关键码的位置需要许多次比较,导致搜索效率降低。**如何缓解呢?

②.二次探测

image-20250506220003691

线性探测的缺陷是产生冲突的数据堆积在一块,这与其找下一个空位置有关系,因为找空位置的方式就是挨着往后逐个去找,因此二次探测为了避免该问题,找下一个空位置的方法为: H i H_i Hi = ( H 0 H_0 H0 + i 2 i^2 i2 )% m, 或者: H i H_i Hi = ( H 0 H_0 H0 - i 2 i^2 i2 )% m。其中:i = 1,2,3…; H 0 H_0 H0是通过散列函数Hash(x)对元素的关键码 key 进行计算得到的位置,m是表的大小。

对于2.1中如果要插入44,产生冲突,使用解决后的情况为:

image-20250506215907605

研究表明:当表的长度为质数且表装载因子a不超过0.5时,新的表项一定能够插入,而且任何一个位置都不会被探查两次。因此只要表中有一半的空位置,就不会存在表满的问题。在搜索时可以不考虑表装满的情况,但在插入时必须确保表的装载因子a不超过0.5,如果超出必须考虑增容。

因此:闭散列最大的缺陷就是空间利用率比较低,这也是哈希的缺陷。

(2).开散列(⼜称哈希桶/拉链)
①.开散列概念

开散列法又叫链地址法(开链法),首先对关键码集合用散列函数计算散列地址,具有相同地址的关键码归于同一子集合,每一个子集合称为一个桶,各个桶中的元素通过一个单链表链接起来,各链表的头结点存储在哈希表中。

image-20250506221032270

image-20250506221045296

从上图可以看出,开散列中每个桶中放的都是发生哈希冲突的元素。

②.开散列实现
#pragma once
#include<vector>
#include<iostream>

using namespace std;

template<class K>
struct HashFunc
{
	size_t operator ()(const K& key)
	{
		return (size_t)key;
	}
};

//特化string(string做key比较常见,库里面也实现了string转int的仿函数.
template<>
struct HashFunc<string>
{
	size_t operator ()(const string& key)
	{
		size_t hash = 0;
		for (auto e : key)
		{
			hash *= 31;//一种算法,使得即使相同的字符组成的句子(如:abc,cba),key转化后的整型值(hash)也不一样
			hash += e;
		}
		return hash;
	}
};

// 二.开散列(哈希桶)
namespace hash_bucket
{
	template<class K, class V>
	struct HashNode
	{
		pair<K, V> _kv;
		HashNode<K, V>* _next;

		HashNode(const pair<K, V>& kv)
			:_kv(kv),
			_next(nullptr)
		{ }
	};

	template<class K, class V, class Hash = HashFunc<K>>
	class HashTable
	{
		typedef HashNode<K, V> Node;
	public:
		HashTable()
		{
			_tables.resize(10, nullptr);
		}

		~HashTable()
		{
			// 依次把每个桶释放
			for (int i = 0; i < _tables.size(); i++)
			{
				Node* cur = _tables[i];
				while (cur)
				{
					Node* next=cur->_next;
					delete cur;
					cur = next;
				}
				_tables[i] = nullptr;
			}
		}

		bool Insert(const pair<K, V>& kv)
		{
			//负载因子==1->扩容

			//1.现代写法
			//出了局部作用域原表销毁,比较浪费.
			//如果有10000个结点,扩容一次需要new1000个结点,delete10000个结点。
			//if (_n == _tables.size())
			//{
			//	HashTable<K, V> newHT;
			//	newHT._tables.resize(_tables.size() * 2);
			//	for (int i = 0; i < _tables.size(); i++)
			//	{
			//		Node* cur = _tables[i];
			//		while (cur)
			//		{
			//			newHT.Insert(cur->_kv);
			//			cur = cur->_next;
			//		}
			//	}
			//	_tables.swap(newHT._tables);
			//}

			//2.普通写法
			if (_n == _tables.size())
			{
				vector<Node*> newtables(_tables.size() * 2, nullptr);
				for (int i = 0; i < _tables.size(); i++)
				{
					Node* cur = _tables[i];
					while (cur)
					{
						Node* next = cur->_next;
						//旧表中节点,挪动新表重新映射的位置
						size_t hashi = hs(cur->_kv.first) % newtables.size();
						//旧表中节点,头插到新表
						cur->_next = newtables[hashi];
						newtables[hashi] = cur;

						cur = next;
					}
					_tables[i] = nullptr;
				}
				_tables.swap(newtables);
			}

			//头插
			Hash hs;
			size_t hashi = hs(kv.first) % _tables.size();
			Node* newnode = new Node(kv);
			newnode->_next = _tables[hashi];
			_tables[hashi] = newnode;
			++_n;

			return true;
		}

		Node* Find(const K& key)
		{
			Hash hs;
			size_t hashi = hs(key) % _tables.size();
			Node* cur = _tables[hashi];
			while (cur)
			{
				if (cur->_kv.first == key)
					return cur;
				cur = cur->_next;
			}

			return nullptr;
		}

		bool Erase(const K& key)
		{
			Hash hs;
			size_t hashi = hs(key) % _tables.size();
			Node* prev = nullptr;
			Node* cur = _tables[hashi];
			while (cur)
			{
				if (cur->_kv.first == key)
				{
					if (prev == nullptr)
					{
						_tables[hashi] = cur->_next;
					}
					else
					{
						prev->_next = cur->_next;
					}

					delete cur;
					--_n;
					return true;
				}

				prev = cur;
				cur = cur->_next;
			}

			return false;
		}

	private:
		vector<Node*> _tables;	//指针数组
		size_t _n = 0;			//表中存储数据的个数
	};
}
③.开散列增容

桶的个数是一定的,随着元素的不断插入,每个桶中元素的个数不断增多,极端情况下,可能会导致一个桶中链表节点非常多,会影响的哈希表的性能,因此在一定条件下需要对哈希表进行增容,那该条件怎么确认呢?开散列最好的情况是:每个哈希桶中刚好挂一个节点,
再继续插入元素时,每一次都会发生哈希冲突,因此,在元素个数刚好等于桶的个数时,可以给哈希表增容。

用负载因子解决,具体实现看后面unordered_ map和set的封装

④.开散列的思考
  1. 只能存储key为整形的元素,其他类型怎么解决?

    用仿函数解决,具体实现见后面unordered_ map和set的封装

  2. 除留余数法,最好模一个素数,如何每次快速取一个类似两倍关系的素数?

    size_t GetNextPrime(size_t prime)
    {
    	const int PRIMECOUNT = 28;
    	static const size_t primeList[PRIMECOUNT] =
    	{
    	53ul, 97ul, 193ul, 389ul, 769ul,
    	1543ul, 3079ul, 6151ul, 12289ul, 24593ul,
    	49157ul, 98317ul, 196613ul, 393241ul, 786433ul,
    	1572869ul, 3145739ul, 6291469ul, 12582917ul,
       25165843ul,
    	50331653ul, 100663319ul, 201326611ul, 402653189ul,
       805306457ul,
    	1610612741ul, 3221225473ul, 4294967291ul
    	};
    	size_t i = 0;
    	for (; i < PRIMECOUNT; ++i)
    	{
    		if (primeList[i] > prime)
    			return primeList[i];
    	}
    	return primeList[i];
    }
    
⑤.开散列与闭散列比较

应用链地址法处理溢出,需要增设链接指针,似乎增加了存储开销。事实上:由于开地址法必须保持大量的空闲空间以确保搜索效率,如二次探查法要求装载因子a <= 0.7,而表项所占空间又比指针大的多,所以使用链地址法反而比开地址法节省存储空间。

三.unordered_map和unordered_set模拟实现

1. HashTable.h

#pragma once
#include<vector>
#include<iostream>

//实现步骤:
// 1、实现哈希表
// 2、封装unordered_map和unordered_set  解决KeyOfT
// 3、iterator
// 4、const_iterator
// 5、修改key的问题
// 6、operator[]

using namespace std;

template<class K>
struct HashFunc
{
	size_t operator ()(const K& key)
	{
		return (size_t)key;
	}
};

//特化string(string做key比较常见,库里面也实现了string转int的仿函数.
template<>
struct HashFunc<string>
{
	size_t operator ()(const string& key)
	{
		size_t hash = 0;
		for (auto e : key)
		{
			hash *= 31;//一种算法,使得即使相同的字符组成的句子(如:abc,cba),key转化后的整型值(hash)也不一样
			hash += e;
		}
		return hash;
	}
};

// 使用开散列实现(哈希桶)
namespace hash_bucket
{
	template<class T>
	struct HashNode
	{
		T _data;
		HashNode<T>* _next;

		HashNode(const T& data)
			:_data(data)
			,_next(nullptr)
		{}
	};

	//前置声明,要不HTIterator找不到HashTable;注:前置声明不能写缺省类型;
	template<class K, class T, class KeyOfT, class Hash>
	class HashTable;

	template<class K, class T, class Ptr, class Ref, class KeyOfT, class Hash>
	struct HTIterator
	{
		typedef HashNode<T> Node;
		typedef HTIterator<K,T, Ptr, Ref,KeyOfT, Hash> Self;

		Node* _node;
		const HashTable<K, T, KeyOfT, Hash>* _pht;

		HTIterator(Node* node, const HashTable<K, T, KeyOfT, Hash>* pht)
			:_node(node)
			,_pht(pht)
		{}

		Ref operator*()
		{
			return _node->_data;
		}
		
		Ptr operator->()
		{
			return &(_node->_data);
		}

		bool operator!=(const Self& s)
		{
			return _node != s._node;
		}

		Self operator++()
		{
			if (_node->_next)
			{
				//当前桶还有结点
				_node = _node->_next;
			}
			else
			{	
				//当前桶走完了,找下一个不为空的桶
				KeyOfT kot;
				Hash hs;
				size_t hashi = hs(kot(_node->_data)) % (_pht->_tables).size();
				++hashi;
				while (hashi < (_pht->_tables).size())
				{
					if(_pht->_tables[hashi])
					{
						break;
					}
					++hashi;
				}

				if (hashi == (_pht->_tables).size())
				{
					_node = nullptr;// end()
				}
				else
				{
					_node = _pht->_tables[hashi];
				}
			}
			return *this;
		}
	};

	template<class K, class T, class KeyOfT, class Hash>
	class HashTable
	{
		//友元声明(必须要带上模板参数)
		template<class K, class T, class Ptr, class Ref, class KeyOfT, class Hash>
		friend struct HTIterator;

		typedef HashNode<T> Node;
	public:
		typedef HTIterator<K, T,T*,T&, KeyOfT, Hash> Iterator;
		typedef HTIterator<K, T,const T*,const T&, KeyOfT, Hash> ConstIterator;

		Iterator Begin()
		{
			if (_n == 0)
				return End();

			for (size_t i = 0; i < _tables.size(); i++)
			{
				if(_tables[i])
					return Iterator(_tables[i], this);
			}

			return End();//为满足编译器检查,走不到这.
		}

		Iterator End()
		{
			return Iterator(nullptr, this);
		}

		ConstIterator Begin()const
		{
			if (_n == 0)
				return End();

			for (size_t i = 0; i < _tables.size(); i++)
			{
				if (_tables[i])
					return ConstIterator(_tables[i], this);
			}

			return End();//为满足编译器检查,走不到这.
		}

		ConstIterator End()const
		{
			return ConstIterator(nullptr, this);
		}

		HashTable()
		{
			_tables.resize(10, nullptr);
		}

		~HashTable()
		{
			// 依次把每个桶释放
			for (int i = 0; i < _tables.size(); i++)
			{
				Node* cur = _tables[i];
				while (cur)
				{
					Node* next = cur->_next;
					delete cur;
					cur = next;
				}
				_tables[i] = nullptr;
			}
		}

		pair<Iterator,bool> Insert(const T& data)
		{
			KeyOfT kot;
			Hash hs;
			Iterator it = Find(kot(data));
			if (it != End())
				return make_pair(it, false);

			//负载因子==1->扩容
			if (_n == _tables.size())
			{
				vector<Node*> newtables(_tables.size() * 2, nullptr);
				for (int i = 0; i < _tables.size(); i++)
				{
					Node* cur = _tables[i];
					while (cur)
					{
						Node* next = cur->_next;
						//旧表中节点,挪动新表重新映射的位置
						size_t hashi = hs(kot(cur->_data)) % newtables.size();
						//旧表中节点,头插到新表
						cur->_next = newtables[hashi];
						newtables[hashi] = cur;

						cur = next;
					}
					_tables[i] = nullptr;
				}
				_tables.swap(newtables);
			}

			//头插新节点
			size_t hashi = hs(kot(data)) % _tables.size();
			Node* newnode = new Node(data);
			newnode->_next = _tables[hashi];
			_tables[hashi] = newnode;
			++_n;

			return make_pair(Iterator(newnode, this), true);
		}

		Iterator Find(const K& key)
		{
			KeyOfT kot;
			Hash hs;
			size_t hashi = hs(key) % _tables.size();
			Node* cur = _tables[hashi];
			while (cur)
			{
				if (kot(cur->_data) == key)
					return Iterator(cur,this);
				cur = cur->_next;
			}

			return End();
		}

		bool Erase(const K& key)
		{
			KeyOfT kot;
			Hash hs;

			size_t hashi = hs(key) % _tables.size();
			Node* prev = nullptr;
			Node* cur = _tables[hashi];
			while (cur)
			{
				if (kot(cur->_data) == key)
				{
					if (prev == nullptr)
					{
						_tables[hashi] = cur->_next;
					}
					else
					{
						prev->_next = cur->_next;
					}

					delete cur;
					--_n;
					return true;
				}

				prev = cur;
				cur = cur->_next;
			}

			return false;
		}

	private:
		vector<Node*> _tables;	//指针数组
		size_t _n = 0;			//表中存储数据的个数
	};
}

2. HashTable.h

#pragma once

#include"HashTable.h"

namespace bit
{
	template<class K, class V, class Hash = HashFunc<K>>
	class unordered_map
	{
		struct MapKeyOfT
		{
			const K& operator()(const pair<K, V>& kv)
			{
				return kv.first;
			}
		};

	public:
		typedef typename hash_bucket::HashTable<K, pair<const K, V>, MapKeyOfT, Hash>::Iterator iterator;
		typedef typename hash_bucket::HashTable<K, pair<const K, V>, MapKeyOfT, Hash>::ConstIterator const_iterator;

		iterator begin()
		{
			return _ht.Begin();
		}

		iterator end()
		{
			return _ht.End();
		}

		const_iterator begin()const
		{
			return _ht.Begin();
		}

		const_iterator end()const
		{
			return _ht.End();
		}

		pair<iterator, bool> insert(const pair<K, V>& kv)
		{
			return _ht.Insert(kv);
		}

		V& operator[](const K& key)
		{
			pair<iterator,bool> ret = _ht.Insert(make_pair(key,V()));
			return ret.first->second;
		}

		iterator Find(const K& key)
		{
			return _ht.Find(key);
		}

		bool Erase(const K& key)
		{
			return _ht.Erase(key);
		}

	private:
		hash_bucket::HashTable<K, pair<const K, V>, MapKeyOfT, Hash> _ht;
	};

	void test_map()
	{
		unordered_map<string, string> dict;
		dict.insert({ "sort", "排序" });
		dict.insert({ "left", "左边" });
		dict.insert({ "right", "右边" });

		dict["left"] = "左边,剩余";
		dict["insert"] = "插入";
		dict["string"];

		unordered_map<string, string>::iterator it = dict.begin();
		while (it != dict.end())
		{
			// 不能修改first,可以修改second
			//it->first += 'x';
			it->second += 'x';

			cout << it->first << ":" << it->second << endl;
			++it;
		}
		cout << endl;
	}
}

3. UnorderedSet.h

#pragma once

#include"HashTable.h"

namespace bit
{
	template<class K,class Hash = HashFunc<K>>
	class unordered_set
	{
		struct SetKeyOfT
		{
			const K& operator()(const K& key)
			{
				return key;
			}
		};

	public:
		typedef typename hash_bucket::HashTable<K, const K, SetKeyOfT, Hash>::Iterator iterator;
		typedef typename hash_bucket::HashTable<K, const K, SetKeyOfT, Hash>::ConstIterator const_iterator;

		iterator begin()
		{
			return _ht.Begin();
		}

		iterator end()
		{
			return _ht.End();
		}

		const_iterator begin()const
		{
			return _ht.Begin();
		}

		const_iterator end()const
		{
			return _ht.End();
		}

		pair<iterator, bool> insert(const K& key)
		{
			return _ht.Insert(key);
		}

		iterator Find(const K& key)
		{
			return _ht.Find(key);
		}

		bool Erase(const K& key)
		{
			return _ht.Erase(key);
		}

	private:
		hash_bucket::HashTable<K, const K, SetKeyOfT, Hash> _ht;
	};

	void Print(const unordered_set<int>& s)
	{
		unordered_set<int>::const_iterator it = s.begin();
		while (it != s.end())
		{
			//(*it)++;
			cout << *it << " ";
			++it;
		}
		cout << endl;
	}

	struct Date
	{
		int _year;
		int _month;
		int _day;

		bool operator==(const Date& d) const
		{
			return _year == d._year 
				&& _month == d._month 
				&& _day == d._day;
		}
	};

	struct HashDate
	{
		size_t operator()(const Date& key)
		{
			return (key._year * 31 + key._month) * 31 + key._day;//避开冲突
		}
	};

	void test_set()
	{
		unordered_set<int> s;
		int a[] = { 4, 2, 6, 1, 3, 5, 15, 7, 16, 14 ,3 ,3 ,15};
		for (auto e : a)
		{
			s.insert(e);
		}

		for (auto e : s)
		{
			cout << e << " ";
		}
		cout << endl;

		unordered_set<int>::iterator it = s.begin();
		while (it != s.end())
		{
			//(*it)++;
			cout << *it << " ";
			++it;
		}
		cout << endl;

		Print(s);

		unordered_set<Date, HashDate> us;
		us.insert({ 2024,07,25 });
		us.insert({ 2024,07,26 });

	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值