【老保姆教程】:Tesseract-OCR图片文字识别

本文介绍了Tesseract-OCR的安装、环境变量配置和语言包设置,通过CMD命令行及PyCharm实现图片识别。遇到识别精度低的问题,可考虑训练库或采用更专业的解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

🌟介绍一波


Tesseract-OCR 是一款由HP实验室开发由Google维护的开源OCR(Optical Character Recognition , 光学字符识别)引擎。与Microsoft Office Document Imaging(MODI)相比,我们可以不断的训练的库,使图像转换文本的能力不断增强;如果团队深度需要,还可以以它为模板,开发出符合自身需求的OCR引擎。
(别问我咋知道,百度一下,你就知道😛)

🌟小安装


🌟配置环境变量


⭐️tesseract-ocr配置

  1. 下载 tesseract-ocr-setup-4.00.00dev.exe 完成后,对tesseract-ocr进行安装,找到tesseract.exe所在的文件路径,复制该文件所在的路径。
    在这里插入图片描述

  2. 打开环境变量:打开控制面板——>输入“环境”,回车——>点击“编辑系统环境变量”——>点击“环境变量”。
    在这里插入图片描述
    在这里插入图片描述
    3、在用户变量系统变量Path中分别粘贴之前复制的路径,最后一直点击“确定”即可。
    在这里插入图片描述
    在这里插入图片描述

⭐️tessdata语言配置

  1. 在Tesseract-OCR的文件夹中找到tessdata文件夹并进入(此文件夹中包含的是各种语言包,提供识别功能)并复制此路径。
    在这里插入图片描述
  2. 打开环境变量(以上已有,不再赘述),在系统变量中点击新建,添加一个系统变量,变量名为TESSDATA_PREFIX,变量值为tessdata文件夹的路径
    在这里插入图片描述

⭐️检测环境变量是否安装成功

👉打开cmd命令框并输入tesseract后回车,如果出现以下内容则表示环境变量安装成功。
在这里插入图片描述

🌟语言包的配置使用


下载好tessdata各语言集合包并解压后点击进入文件,即可看见里面有很多语言包(chi_sim是中文识别包,equ是数学公式包,eng是英文包 ),可将对应的语言包复制并粘贴到Tesseract-OCR的文件夹下的tessdata文件夹中。
在这里插入图片描述

🌟CMD命令框中进行图片识别操作


  • 在CMD中进入所要识别图片的路径。
    在这里插入图片描述

在这里插入图片描述

⭐️举例一:识别数字

命令(举例):tesseract 1.png out_1 -1 eng
1.png:图片名称
out_1:识别后形成的文本文件名称
-l:不是数字1,而是字母L的小写
eng:识别的是数字或英文

在这里插入图片描述

  • 这时则在图片路径下生成一个名为out_1的文本文件,文件中写入的是识别的内容。
    在这里插入图片描述

⭐️举例二:识别文字

在这里插入图片描述
在这里插入图片描述

🌟pycharm中进行图片识别操作


  • 需要下载的模块:
    pip install PIL
    pip install pytesseract

⭐️举例一:识别文字

from PIL import Image
from pytesseract import pytesseract

a = pytesseract.image_to_string(Image.open('F:/识别/2.png'), lang='chi_sim')
print(a)

在这里插入图片描述

🌟唠唠问题


大家可以发现👀,使用Tesseract-OCR进行图片文字识别时会出现识别错误的情况,也就是识别精度较低。当我们想识别文字较多,内容较为复杂的图片时,就很难识别出来了,这可咋办?
莫慌莫慌,想要知道如何解决,请听下回分解😜

### Tesseract OCR 完整教程和使用指南 #### 了解 Tesseract OCR Tesseract 是由 Google 开发的一个开源光学字符识别 (OCR) 引擎,主要用于从各种类型的图像中提取文本信息。该项目主要采用 C++ 编写,并集成了多种关键技术以提高识别效率和准确性[^1]。 #### 关键技术概述 - **LSTM(长短期记忆网络)**:Tesseract 4 版本起引入了基于 LSTM 的机器学习模型来进行更精准的文字检测与识别。 - **Leptonica 图像处理库**: 提供了一系列强大的工具函数帮助预处理输入图片以便更好地适应 OCR 处理需求。 #### 构建与部署准备事项 为了能够顺利编译并运行 Tesseract 应用程序,在开始之前需完成以下几项准备工作: ##### 软件依赖安装 确保已安装必要的软件包如 Git、CMake 及其他可能需要的开发工具链;对于特定操作系统还需额外注意其特有的前置条件设置说明。 ##### 设置环境变量 针对不同平台执行相应指令使 `tesseract` 命令全局可用,并通过定义 `TESSDATA_PREFIX` 来指定语言数据的位置,这对于多语种支持至关重要[^3]。 ```bash export TESSDATA_PREFIX=/usr/local/share/tessdata/ ``` #### 实际应用案例分析 当与其他先进的 OCR 解决方案相结合时——例如百度 PaddleOCR——可以进一步增强对复杂场景中文档布局的理解能力以及特殊情况下字符形态变化后的辨识度[^2]。 #### Python 接口调用实例 下面给出一段简单的 Python 代码片段展示如何利用 PyPI 上发布的官方封装模块 pytesseract 对一张本地存储的照片实施基本的文字抓取操作: ```python from PIL import Image import pytesseract image_path = 'example_image.png' text = pytesseract.image_to_string(Image.open(image_path), lang='chi_sim') print(text) ``` 此段脚本首先导入所需类库,接着加载目标影像文件并通过设定参数指明所期望的语言版本(这里选择了简体中文),最后输出转换所得字符串结果。
评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

街 三 仔

你的鼓励是我创作的最大动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值