3 树莓派虚拟机安装Miniconda+Mediapipe+Pytorch+TensorFlow

本文详细介绍了在树莓派虚拟机上安装Miniconda、Mediapipe、Pytorch和TensorFlow的步骤。包括下载Miniconda、设置环境变量、解决依赖问题以及安装和验证各个库的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本篇文章主要分享在树莓派虚拟机上安装Miniconda+Mediapipe+Pytorch+TensorFlow的简易版教程,使用的镜像为2020-02-12-rpd-x86-buster.iso,虚拟机软件为VMware16。

目录

一、准备工作

二、Miniconda的安装

三、Mediapipe的安装

四、Pytorch安装

五、TensorFlow安装


一、准备工作

1、首先查看系统情况,输入如下命令。

uname -a

我的虚拟机的结果如下图所示。

二、Miniconda的安装

1、下载网址我一般会从Miniconda官网或者清华的镜像站上下载,在第一部分中查看过系统是Linux-x86_64,所以我们也选择这个后缀的进行下载,同时Miniconda2中的初始Python版本是2,Miniconda3中的初始Python版本才是3,这点要注意。latest表示最新的。

在终端输入以下命令,下载安装包(二选一,镜像站上的肯定快一些)

wget https://mirrors.tuna.tsinghua.edu.cn/anaconda/miniconda/Miniconda3-latest-Linux-x86_64.sh
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86.sh

下载完成后如图所示

2、为该脚本在用户pi下赋予可执行权限,执行该脚本。

在终端输入如下命令,敲回车,如下图所示。

chmod +x /home/pi/Miniconda3-latest-Linux-x86_64.sh
sh /home/pi/Miniconda3-latest-Linux-x86_64.sh

3、敲击回车,进入下一步,下图是敲击回车后的图片

4、按一下键盘上的"Q"键,跳到协议的末尾,如下图所示

<think>好的,用户需要为RTX 4090显卡和Miniconda框架找到兼容的PyTorch版本。首先,我得确认RTX 4090的CUDA计算能力。RTX 40系列显卡通常使用Ada Lovelace架构,计算能力应该是sm_89或更高。根据之前的引用[^1],RTX 3090是sm_86,而PyTorch旧版本不支持,所以需要更高版本的PyTorch支持sm_89。 接下来,查阅PyTorch官网的版本支持。PyTorch 1.12+开始支持CUDA 11.7及更高,而1.13+支持CUDA 12.x。RTX 4090需要CUDA 12.x,因此应选择PyTorch 1.13或更新的版本。根据引用[^2]和[^3],用户可能需要安装特定版本的CUDA工具包,如11.8或12.1,并确保cuDNN版本匹配。 然后考虑Miniconda的环境配置。用户需要创建新的conda环境,安装对应CUDA版本的PyTorch。例如,使用conda命令安装PyTorch 2.0+,并指定cudatoolkit=12.1。同时,检查驱动程序的兼容性,NVIDIA驱动需>=525.60.13以支持CUDA 12。 最后验证安装是否正确,通过运行Python脚本检查torch.cuda.is_available()和计算能力。确保所有组件版本匹配,避免兼容性问题。可能的问题包括驱动版本过低或PyTorch版本选择错误,需逐一排查。</think>### Miniconda与RTX 4090兼容的PyTorch版本配置指南 #### 1. 硬件与驱动要求 - **RTX 4090的CUDA计算能力**:Ada Lovelace架构支持`sm_89`及以上,需要PyTorch版本至少支持CUDA 12.x[^1] - **NVIDIA驱动要求**:需≥525.60.13(支持CUDA 12.1) #### 2. 推荐PyTorch版本 | PyTorch版本 | CUDA版本 | 安装命令(conda) | |---------------|------------|-----------------------------------| | PyTorch ≥2.0 | CUDA 12.1 | `conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia` | | PyTorch ≥1.13 | CUDA 11.8 | `conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia` | #### 3. 验证安装 运行以下Python代码检查兼容性: ```python import torch print(torch.__version__) # PyTorch版本 print(torch.version.cuda) # CUDA版本 print(torch.cuda.get_device_capability(0)) # 应显示(8,9) print(torch.cuda.is_available()) # 应返回True ``` #### 4. 常见问题解决方案 - **驱动不匹配**:通过`nvidia-smi`查看驱动版本,升级至525.60.13+ - **CUDA版本冲突**:创建独立conda环境避免依赖冲突 - **性能优化**:启用cuDNN加速:`torch.backends.cudnn.benchmark = True`
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值